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TAKE-HOME MESSAGES 

• Any material that is exposed to an external static magnetic field becomes magnetized. 
This is the source of a field perturbation also referred to as demagnetization field. 

• Gradient echo phase images reflect the magnetic field at the sites of the nuclei. 
• The Lorentz concept facilitates calculation of the magnetic field at the site of a nucleus. 
• A theoretical description of the relation between the physical quantity magnetic suscepti-

bility and gradient echo phase MRI allows quantifying the magnetic susceptibility distri-
bution of tissue. 

 

TITLE: Static magnetic field: magnetic field (in)homogeneity, susceptibility-related con-
trast & artifacts 

TARGET AUDIENCE: Ph.D. candidates, graduates and scientists, who are interested in under-
standing the relations between Maxwell’s equations, magnetic susceptibility, magnetic field in-
homogeneities and imaging artifacts, and how these relations can be used to infer from the MRI 
signal phase on physical tissue properties. 

OBJECTIVES: This course will derive from first principles the relation between magnetic tissue 
properties and the measured MRI signal. Upon completion of this course, participants will be 
able to explain why a homogeneous static main magnetic field is important for MRI, employ the 
relation between local magnetic fields and measured MRI signal, and understand how tissue 
magnetic properties and magnetic architecture can be derived from MRI phase images in vivo. 

STATIC MAGNETIC FIELD AND DEMAGNETIZATION FIELD: The presence of a strong mag-
netic field represents the fundamental basis of the nuclear magnetic resonance effect. In mod-
ern MRI scanners, the static main magnetic field is relatively homogeneous. Magnetic field in-
homogeneities, depending on their strength and on MR imaging parameters, can cause image 
distortions, signal attenuation through intra-voxel dephasing, and variations of the voxel mean 
magnetic field that can be observed, e.g., in the phase of gradient echo images (see below). 

Any material that is exposed to an external static magnetic field, such as that in an MRI 
scanner, is magnetized, which is the source of an additional field, the so called demagnetization 
field1. The demagnetization field is the field associated with the moving charges in the atoms or 
molecules constituting the sample. Both the orbital motion of electrons (localized current densi-
ty) and the intrinsic moment of electrons (spin) cause a magnetic field distribution around each 
atom or molecule2. The demagnetization field ultimately depends on the strength and direction 
of the applied external field and on sample composition and geometry.  

THEORETICAL DESCRIPTION OF THE MAGNETIC FIELD (LORENTZ APPROACH): Calcu-
lation of the demagnetization field requires carrying out the summation over all magnetic mo-
ments in the sample, which may prove very difficult for a macroscopic sample. A simple macro-
scopic averaging procedure cannot be used to calculate the field in the context of MRI, because 
the nuclear spins used for the MR experiment (usually hydrogen nuclei) are microscopic field 
probes. Consequently, in the context of MR, although measurement volumes are generally mac-
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roscopic (μm to mm scale), the microscopic magnetic environment of the nuclear spins must be 
taken into account when calculating the magnetic field acting on a nuclear magnetic dipole mo-
ment. Macroscopic derivations that account for magnetic moments only in a spatially averaged 
form as bulk macroscopic average quantities cannot be used directly, because the MR meas-
urement does not involve such a spatial averaging process over the microscopic magnetic 
fields. 

It was noted by Lorentz more than 100 years ago3 that calculation of the total field of all 
dipoles can be simplified by virtually separating the environment surrounding the location into a 
near region, inside which magnetic moments are considered as discrete entities with individual 
dipole fields, and a distant region, in which they are treated mathematically as a continuous 
magnetic moment density. The virtual surface separating the near and distant regions is called 
Lorentz surface. The Lorentz surface may be defined almost arbitrarily because it is only a 
mathematical concept to facilitate the field calculations and it has no deeper physical founda-
tion3,4. However, contrary to common misconception, the Lorentz surface cannot be chosen ar-
bitrarily small. The surface must be defined in such a way that the total field at the location of 
the nucleus resulting from all dipoles in the distant region can be modelled as resulting from a 
continuous medium. Lorentz recommended the surface to be larger than the mutual distance of 
nearby adjacent magnetic moments3,4. Loosely speaking, the volume enclosed by the surface 
should be microscopically large, but macroscopically small. For simplicity, it is common to 
choose a spherical Lorentz surface, also referred to as the Lorentz sphere (LS)3,5-8. 

Independent of the chosen surface, the Lorentz approach turns the summation over 
moments in the distant region into an integration over a continuous, macroscopic quantity, and 
allows to separately calculate the field contributions corresponding to moments in the near and 
distant regions, respectively4, yielding 
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where B0 is the applied external (main) magnetic field, Vd is the distant region, Kd and Kn are the 

sets of indices j corresponding to magnetic moments jm
r

 in Vn, and Vn, respectively, l̂  and jm̂  

are the unit vectors in the direction of rr ′− rr
 and jm

r
, respectively, and bd is the dipole field. The 

symbol 
⋅

 indicates a suitable spatial-temporal averaging procedure9. The audience is referred 
to the work by Russakoff for an in-depth discussion of this averaging procedure10.  

 In the MRI literature it is usually assumed that magnetic moments are randomly distrib-
uted in the sample. In this case, the field contributions from all dipoles within the Lorentz sphere 
(the right most term in the equation above) average to zero4. However, this assumption may not 
be valid in (diffusion restricted) biological tissues, such as brain white matter, where the magnet-
ic architecture is known to be anisotropic11,12. In this case, the near field depends on the local 
microscopic arrangement of dipoles and can, hence, be spatially dependent and different from 
zero. 

MAGNETIC SUSCEPTIBILITY: The magnetic susceptibility χ is a dimensionless macroscopic 
physical property that characterizes the dependence of the (induced) magnetization on the local 
magnetic field. In the most general case, χ is a second-order (rank-2) tensor that depends on 
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the local magnetic field and magnetic history (hysteresis)13. Materials with negative susceptibility 
χ are called diamagnetic materials; whereas the susceptibilities of paramagnetic and ferromag-
netic materials are positive. Most biomaterials are diamagnetic or weakly paramagnetic with 
susceptibilities on the order of ±10−5 to ±10−6 (|χ|<<1)14. Susceptibilities of ferromagnetic materi-
als are several orders of magnitude higher (χ > 1); these materials are generally considered 
MRI unsafe. For non-ferromagnetic materials the total field can be written in a first-order approx-
imation as a convolution integral1,8,15,[16: 
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χ  is a macroscopic unit-dipole function or, mathematically speaking, 

the Green’s function of the inverse macroscopic field-to-source problem1 (θ is the angle between 
r
r

 and the applied magnetic field). The derivation of this equation implicitly assumes that the Lo-
rentz near field equals zero. 

Ever since the early days of magnetic resonance imaging (MRI) strong interest existed in 
the tomographic quantification of magnetic susceptibility15,17-19, because it was noticed that tis-
sue magnetic susceptibilities differ depending on tissue chemical composition20,21. Today we 
know that magnetic susceptibility of brain tissue is dominated essentially by four major constitu-
ents: water, myelin, iron and calcium22-24. Myelin, the lipoprotein sheath surrounding axons, is 
more diamagnetic than water11,12,22,25, potentially allowing to pick up tissue demyelination asso-
ciated with neurodegenerative diseases26. Depending on its chemical form iron can have a rela-
tively high magnetic susceptibility25,27,28. Calcium, like myelin, has a lower (more diamagnetic) 
susceptibility than water, potentially enabling differentiation between calcium and blood (heme 
iron) or blood products in brain lesions29-31. 

PHASE IMAGING: Due to the Larmor relation the MR signal frequency directly depends on the 
magnetic field at the site of the nucleus32: 
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where γ is the gyromagnetic ratio. MR measures the Larmor frequency referenced to a tech-
nical, pre-adjusted demodulation frequency f0, which transforms the frequency from the labora-
tory frame to a rotating frame. Gradient echo (GRE) MRI33,34 can be understood as sampling at 
one or more time points, t = TE (echo time), the complex-valued free induction decay (FID) MR 
signal, which follows the MR radio-frequency excitation12. The GRE signal in an imaging voxel V 
can be approximated as 

( )( )
3

d)(

d),(),(

TE

0

0L

reTEraTEVI
V

tftrfi rr
r

∫
∫

⋅≈
′−′⋅−

, 

where a(r,TE) indicates the amplitude of the transverse nuclear magnetization at location r
r

 and 
time TE. If the magnetic susceptibility is homogeneous and constant within each imaging voxel, 
the phase φ of the complex-valued GRE-signal, I(V,TE), yields for each voxel estimates of fL of 
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all spins in that voxel32 (right-handed MR system35): φ(TE) = φ0 + 2π · (fL – f0) · TE. The time-
independent phase term φ0 represents the signal phase at echo time of 0 ms, usually defined by 
the end of the excitation radio-frequency (RF) pulse. Gradient echo phase images have been 
demonstrated to provide unique anatomical contrast complementary to other MRI techniques, in 
particular complementary to gradient echo magnitude images36-38. The phase contrast is a direct 
result of the relation between gradient echo phase, demagnetization field and underlying mag-
netic susceptibility distribution (see above).  

MAGNETIC SUSCEPTIBILITY MAPPING: Quantitative susceptibility mapping (QSM) is a post-
processing technique for gradient echo phase images that retrieves quantitative information 
about the underlying magnetic susceptibility distribution of a sample or biological object1,24,25,39-

43. QSM involved several sophisticated processing steps, including estimating the magnetic field 
distribution from raw MRI phase data, eliminating so-called background field contributions that 
may result from magnetization induced outside of the imaging field-of-view in MR-invisible are-
as, and, finally, solving the inverse problem from field perturbation to magnetic susceptibility. 
Each processing steps needs to be carried out with utmost rigor because the final inversion step 
is highly sensitive to noise and errors in the input field pattern44,45. Various methods have been 
developed in the recent past to address the challenging problem of QSM and several groups 
have presented maps of apparent bulk magnetic susceptibility and even maps of magnetic sus-
ceptibility tensors with high image quality and unprecedented anatomical detail. 

LIMITATIONS: Although the field of quantitative phase imaging has experienced an impressive 
growth and achieved substantial scientific progress over the past several years, several chal-
lenges remain. Most troubling is that microstructural near-field effects have been neglected so 
far in QSM; the fundamental basis of current QSM algoriths is that the Lorentz near field van-
ishes, which is questionable in anisotropic tissue, such as the brain. In fact, the Lorentz effect 
has recently been hypothesized as a cause of phase image contrast itself46. The situation be-
comes even more complex when multiple tissue compartments are considered with different 
dipole distributions and different T1 and T2* relaxation properties (as in brain tissues)12. Ya-
blonskiy and Sukstanskii recently presented a comprehensive theoretical description of these 
effects, the Generalized Lorentzian Tensor Approach (GLTA)47. However, it is unknown so far 
how the inverse GLTA problem can be solved, i.e. how the magnetic susceptibility distribution 
can be calculated accounting for phase effects associated to the microscopic magnetic architec-
ture.  
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