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I. INTRODUCTION: THE MESOSCOPIC SCALE

A. NMR of simple liquids: The molecular scale

In the first few decades after the discovery of NMR, its main
applications focused on the structure of molecules. A macro-
scopic sample, often a chemical solution in an NMR tube of
a few cubic millimeters volume, was uniform down to molec-
ular dimensions. This well-mixed solution ensured that the
NMR measurement was a giant ensemble average, recording
average NMR properties of a proton at a given molecular site.
Equivalently, one could think about studying one molecule
many times and averaging over the outcomes. All relevant
interactions affecting a given nuclear spin played out at the
molecular level, in very close proximity: dipole-dipole inter-
actions between adjacent spins, fluctuating in time due to a
stochastic nature of the molecular environment, resulted in the
chemical shift and in BPP relaxation [1]. These phenomena
occurred at the molecular scale of about a nanometer.

Quantifying these microscopic processes and explaining
NMR line shapes for different nuclei presented a theoretical
challenge. The relevant microscopic, i.e. atomic or molecu-
lar, scale dictated the development of the necessary theoret-
ical framework for quantifying the observed effects, which
took a couple of decades to build. The framework was based
on the quantum-mechanical evolution of a few coupled spins,
with the solutions typically averaged over thermal fluctua-
tions. Hence, the relevant mathematics [2–4] was based on
the Schrödinger equation, the evolution equation for the den-
sity matrix, and the chemical exchange models [5]. As a par-
ticular outcome, the relaxation phenomena were understood
in terms of spin-spin couplings and the parameters of the en-
vironment and the chemical exchange rates.

With the invention of MRI, and practically from the 1980s
onwards, biomedical applications [6] came to the forefront.
At first, it was exciting enough to recognize the correlations of
empirical NMR parameters, such as T1, T2, and the diffusion
coefficient D, with anatomy and (patho)physiology.

Empirical correlations between MRI parameters and
pathology have proven to be extremely useful, even though of-
ten times their biophysical origins are yet to be clarified. The
famous example is an almost twofold drop of the diffusion
coefficient in acute ischemia [7], an effect discovered in 1990,
utilized clinically for over a decade, and whose microstruc-
tural origins are under intense debate even today.

However, collecting empirical correlations cannot be the
end goal of scientific exploration. Eventually, we are faced
with hard questions — what is it that we measure, and what
does it really mean at the cellular level. Addressing them is
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•  Acquire MR signal from a macroscopic voxel ~ mm resolution 

•  Interested in the mesoscopic structure at ~ 1–10 µm scale: 
 Spatially varying Larmor frequency Ω(r), relaxation rate R2(r),  

 Diffusion coefficient D(r), barriers (membranes), … 

•   Typical parameters: 
 D ~ 1 µm2/ms;  diffusion time t ~ 1 – 1000 ms;   diffusion  length  L(t) ~ 1 – 50 µm 

FIG. 1. (A) The challenge of the biomedical MRI is to quantify the structural complexity at the mesoscopic scale, orders of magnitude below
the nominal imaging resolution. (B) Examples of tissue architecture at mesoscopic scale, which greatly exceeds the molecular dimensions
(nanometers), yet it is still far finer than the macroscopic imaging resolution of millimeters.

important not just to satisfy our curiosity, but is crucial in or-
der to develop markers which are not just empirically sen-
sitive, but which are specific to particular pathological pro-
cesses.

Here is where the mesoscopic scale comes into play.

B. Tissue architecture: The mesoscopic scale

The chief difference between the “chemical” NMR of the
1950s–1970s and the “biological” NMR and MRI of the mod-
ern days is the presence of immense structural complexity at
the mesoscopic scale, Fig. 1. This scale, ranging between a
fraction of a µm to tens of µm, is intermediate (hence “meso”)
between the molecular scale, and the macroscopic scale of the
MRI resolution. This is the scale of the cellular tissue archi-
tecture, which makes tissues so specific, complex, and radi-
cally different from a mere solution of proteins in water.

In connection to the mesoscopic scale, the most impor-
tant number to keep in mind is the water diffusion coefficient
value. Between 10oC and body temperature, it ranges

Dwater ∼ 1− 3µm2/ms . (1.1)

Everywhere here we will use “natural” units, µm and ms, for
temporal and spatial scales, as it is in these units the diffusion
coefficient is of the order unity. Reported in the standard SI
units, m2/s, the above value does not look very user friendly.

The diffusion time t, which is set by the echo time or the
mixing time (depending on the NMR sequence), can be prac-
tically varied between a few ms and about 1 s, limited by the
performance of diffusion gradients from below, and by T1

from above. This readily yields the following range for the
diffusion length in water under our control:

L(t) =
√

2Dt ∼ 1− 50µm . (1.2)

The diffusion length, to remind, is the standard deviation for
the molecules to spread over the time t:

L(t) =
〈(
x(t)− x(0)

)2〉1/2

. (1.3)

We should now appreciate that the value (1.1) of the water
diffusion coefficient is a blessing. Indeed, based on this value,
we are essentially given a length scale (1.2), under our con-
trol by varying t, that is far smaller than the nominal imaging
resolution. Furthermore, we are immensely lucky that L(t)
is generally commensurate with cell dimensions. Hence, by
varying the diffusion time t, we can probe the most biologi-
cally relevant length scales!

But what does it mean, to probe the mesoscopic structure
via the varying L(t)? Practically, it means that we study tran-
sient processes, as opposed to the relatively simple station-
ary macroscopic parameters. Thus we expect that our ob-
served relaxation rates and diffusion metrics would in gen-
eral depend on the echo time, evolving as the properties of
the tissue architecture are being sampled by water molecules
traveling over the gradually increasing diffusion length (1.3).
This time dependence, a necessary counterpart of generally
non-exponential relaxation and non-Gaussian diffusion, is the
footprint of tissue complexity at the mesoscopic scale.

The new physics emerging at the mesoscopic scale requires
development of a corresponding theoretical apparatus, which
differs from that used for NMR properties of liquids [2–4]. In-
stead of the quantum-mechanical description of coupled spins,
and the site-exchange models, the relevant theoretical frame-
work at the mesoscale involves purely classical evolution, al-
beit in a structurally complex and randomly looking environ-
ment at the scale of the tissue building blocks. Technically,
the tools include averaging over the Brownian paths of the
spins, and over the stationary structural disorder representing
the mesoscopic tissue architecture, which restricts and mod-
ifies molecular motion. These tools may be borrowed from
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condensed matter physics and statistical physics, which have
faced similar challenges for over half a century in a different
context, describing transport in environments which are het-
erogeneous at the mesoscopic scale [8–15].

The future of advanced diffusion MRI relies on building the
necessary framework for quantifying tissue properties at the
mesoscopic scale. The purpose of these notes is to provide a
foundation of the relation between measurable diffusion met-
rics and the mesoscopic structural complexity.

II. THE DIFFUSION EQUATION

A. The conserved current

The diffusion equation consists of two equations with very
different physical meanings. The first one describes the con-
servation of the number of molecules:

∂tψ(t, r) = −∂r · j(t, r) . (2.1)

It is equivalent to saying that the number of particles QV =∫
V

drψ(t, r) in a given volume V can only change by means
of the particle flow in or out of this volume:

∂tQV = −
∫

∂V

ds · j , (2.2)

where the right-hand side is the net particle current flowing
through the volume’s boundary ∂V .

Equation (2.1) is exact, although not particularly useful yet,
as long as the current is left unspecified. In order to write
down the partial differential equation containing only ψ(t, r),
one needs to relate the current j to the density ψ. The latter re-
lation is always approximate, and depends on the microscopic
properties of the medium.

B. Fick’s law

Let us guess the relation between j andψ, based on the sym-
metry arguments, in the simplest case of a uniform medium.
Imagine that we labeled certain water molecules, with their
physical properties otherwise being the same as those of other
water molecules. Obviously, if the density ψ(t, r) of the la-
beled molecules is uniform, there is no net current of them,
j ≡ 0, as their fluxes in each direction statistically compensate
each other. Hence, the current only occurs when the density is
inhomogeneous, and should increase with the inhomogeneity.
It should also be directed from the excess to the shortage of
the labeled molecules. Finally, the current j is a vector which
should change sign if the density gradient ∂rψ(t, r) (also a
vector!) is reflected, i.e. when the excess and shortage are
swapped places. These considerations naturally lead to the
following approximation:

j(t, r) ≈ −D∂rψ(t, r) , (2.3)

i.e. the particle current is proportional to the density gradient
and is directed against the latter. This is Adolf Fick’s first law,

reported in 1855. Note that this law is similar to Ohm’s law
(electric current is proportional to the gradient of the voltage),
and to the Fourier law (heat flux is proportional to the gradient
of temperature).

The relation (2.3) is the simplest linear response relation,
appropriate for small variations in ψ. However, it is not the
most general linear relation: As we discuss in detail in Sec. IV
below, in principle, symmetry considerations allow one to
write down an expansion in the odd powers of the gradients
of ψ, such as ∂r∇2ψ, etc. Also, such relation may in general
be retarded rather than instantaneous as implied by Eq. (2.3),
i.e. dependent on the values of ψ(t′, r) at the preceding mo-
ments of time t′ < t. These generalizations of the Fick’s law
emerge as a result of averaging over a spatially heterogeneous
sample, as we will describe in Sec. IV B 3 below.

Practically, the simple Fick’s approximation (2.3) works re-
markably well in simple liquids. Combining Eqs. (2.1) and
(2.3), we obtain the diffusion equation

∂tψ = D∂2
rψ , (2.4)

where the single parameter characterizing the molecular mo-
tion is the diffusion constant D.

For a heterogeneous medium, characterized by spatially
varying diffusion coefficient D(r), the Fick’s law can be writ-
ten locally for the vicinity of each point r,

j(t, r) ≈ −D(r) ∂rψ(t, r) . (2.5)

Combining Eqs. (2.1) and (2.5), we obtain the general form of
the diffusion equation in a medium with the spatially varying
diffusion properties:

∂tψ = ∂r
(
D(r)∂rψ

)
. (2.6)

Note again that the current conservation requires that the
right-hand side of Eq. (2.6) be a full divergence. Therefore
writing down the diffusion equation in a different form, e.g.
∂tψ = D(r)∂2

rψ, would result in the net flow (drift).

C. A permeable barrier (membrane)

The spatially varying D(r) in Eq. (2.6) is in principle al-
lowed to vary strongly, so that this equation can be thought of
as containing the effect of permeable membranes, or barriers,
in addition to “smooth” variations of D(r). Indeed, perme-
ability microscopically stems from a spatially varying D(r),
since a permeable barrier can be defined as a thin sheet in
which both the local diffusion coefficient Dm and the thick-
ness lm approach zero, while their ratio

κ =
Dm

lm
(2.7)

remains finite. This ratio κ is the permeability of the barrier.
As the barrier is thin, we can assume that, upon applying

a density mismatch ∆ψ = ψ|x+0 − ψx−0 across a barrier at
point x, the corresponding current j = −Dm · (∆ψ/lm) ≡
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−κ∆ψ and the density gradient ∆ψ/lm become uniform in-
side the barrier practically instantaneously, and the current in-
side the barrier instantly equilibrates with the current at both
sides of the barrier. Hence, the effect of the barrier can also
be formulated as a boundary condition on ψ, with the nor-
mal component of the current at the position of the barrier is
proportional to the discontinuity in the density across it,

−n · j|rm = κ [ψrm+n0 − ψrm−n0] . (2.8)

Here, n is the normal to the barrier at the position rm.
Alternatively, the effect of the barrier can be represented as

a singular term, proportional to the derivative δ′ of the delta-
function along the normal n at r = rm, in the right-hand side
of Eq. (2.6), as described in Ref. [16], such that the diffusion
equation in a uniform medium with diffusion constantD0 and
a barrier at the origin reads

∂tψ = D0∂
2
xψ −

D2
0

κ
δ′(x)[∂xψ]x=0 . (2.9)

Both ways of incorporating the effect of a barrier essentially
stem from the spatially varying D(r) at the scale of the bar-
rier thickness. Hence, in a way, Eq. (2.6) can be thought of as
incorporating both smooth variations of D(r) and the abrupt
drops in D(r) within barriers. Understood in this general
way, Eq. (2.6) can in principle be specified so as to contain
all the mesoscopic structural complexity; its solution, if only
we could find it, would be as much as we could possibly wish
for. For tissues, of course, finding this solution is impossible.

In biological tissues, cf. Fig. 1, the value D(r) is wildly
fluctuating in space, and is difficult to specify (much like it
is practically impossible to precisely specify the positions and
parameters of all cells and cell membranes in a voxel). There-
fore, one seeks to have a more tractable relation between the
density and the current, with both quantities averaged over
random placements of cells in a voxel, which retains measur-
able structural information about the underlying tissue build-
ing blocks at the mesoscopic scale. This relation emerges in
the effective medium theory (EMT) treatment, as described in
Ref. [17] and below in Sec. IV.

But before developing parsimonious approaches to dealing
with Eq. (2.6), let us turn to the measurement.

III. WHAT DO WE MEASURE?

A. The Bloch-Torrey equation

With NMR, after an excitation, one measures the transverse
magnetization M(t, r), which is a complex-valued quantity
(a two-dimensional vector in the plane transverse to the B0

field). Its evolution is governed by the Bloch-Torrey equation
[18], which in the rotating frame reads

∂tM = ∂r
(
D(r)∂rM

)
− iΩ(r)M −R2(r)M . (3.1)

The NMR-specific additional terms, compared to the pure
diffusion equation (2.6), are the locally varying Larmor fre-

quency offset Ω(r) and transverse relaxation rate R2(r). Cru-
cially, their presence result in the right-hand side of Eq. (3.1)
not being the divergence of any “current”.

The absence of the conservation law of the form (2.1) for
M(t, r) results in the transverse relaxation (decay) of the net
magnetization

∫
drM(t, r) acquired within a voxel. Simply

put, the number of water molecules and protons is conserved,
but their magnetization is not.

When both Ω and R2 are uniform across a sample (voxel),
the substitution M = ψ e−iΩt−R2t returns us back to the dif-
fusion equation (2.6). When a sample has nonuniform mag-
netic properties, this factorization does not work, and the re-
laxation effects bias the diffusion metrics [19, 20].

In what follows, we will not consider the relaxation effects,
and will focus solely on the conserving diffusional dynamics
of the water molecules, Eq. (2.6).

B. The diffusion propagator and q-space imaging

The diffusion-weighted measurement is really a transverse
relaxation measurement in disguise. After all, we only mea-
sure the time evolution of the net transverse magnetization
∝
∫
V

drM(t, r), where V is our macroscopic volume (e.g.
an imaging voxel). The trick, due to Stejskal and Tanner
[21], is to apply a known external Ω(t, r), such that the trans-
verse relaxation of the observed “diffusion-weighted signal”
S(t) ∝

∫
V

drM(t, r) would have a footprint of the diffusive
properties of the medium.

For simplicity, let us assume an ideal case of a balanced
narrow-pulse gradient of the Larmor frequency,

g(τ) = q [δ(τ − t)− δ(τ)] . (3.2)

In other words, we have a narrow gradient pulse at τ = 0 and
an opposite pulse of the same magnitude at τ = t. Here, q
is by construction a vector in the direction of g whose mag-
nitude is given by the integral under the gradient pulse. The
parameters q and t are under our experimental control.

The Bloch-Torrey evolution of unit magnetization Mt;rt,r0 ,
which initially were concentrated around r0, Mt;rt,r0 |t=0 =
δ(rt − r0), is then described, according to Eq. (3.1) with
Ω(τ, r) = g(τ)r, as

Mt;rt,r0 = e−iqrtGt;rt,r0eiqr0 . (3.3)

Here, the diffusion propagator Gt;rt,r0 is by definition the
probability density function (PDF) of molecular displace-
ments from point r0 to point rt over time t. It is the most
basic characteristic of diffusion in a given medium (tissue).
Formally, it is the fundamental solution of the diffusion equa-
tion (2.6) and it will be discussed in detail in the following
Section IV, cf. Eq. (4.2) below. Qualitatively, Gt;rt,r0 governs
the purely diffusive spreading of a “packet” of magnetization
carried by water molecules in-between the two pulses.

The measurement effectively averages over the initial
points r0 (as the signal is acquired from all protons in a voxel),
and sums over all the possible finite points rt (since the proba-
bilities of mutually excluding events of taking different Brow-
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nian paths emanating from r0 add up). Introducing the dis-
placement r = rt−r0, we obtain the key relation between the
diffusion-weighted signal Sq(t) and the voxel-averaged prop-
agator [22]:

Sq(t) =

∫

V

dr
dr0

V
e−iqrGt;r0+r,r0 ≡ Gt,q . (3.4)

Defined in this way, the diffusion-weighted signal is normal-
ized to be Sq(t)|t=+0 ≡ 1. Eq. (3.4) says that we are directly
measuring the spatial Fourier transform of the voxel-averaged
displacement PDF, discussed in greater detail around Eq. (4.6)
of the following Section. But already at this point it is intu-
itively clear that (i) the diffusion-weighted measurement con-
tains a lot of information about tissue structure and (ii) this
information is “hidden” due to the averaging over all spins
and their Brownian paths within a voxel.

Sampling the q-space, i.e. the space of all vectors q defined
via Eq. (3.2), by applying balanced diffusion gradients g(τ)
in three dimensions, has been introduced under the term “q-
space imaging” by Callaghan et al. [23] in 1988. Currently,
there are numerous schemes of sampling the q-space. The to-
tal number and configuration of points (Cartesian, spherical
shells, etc), and the maximal q depend on the gradient perfor-
mance and on the limitations on the scan time. In general, the
choice of an acquisition scheme should be tied to the model of
the mesoscopic tissue structure which we would like to probe;
there is certainly no single “best” q-space sampling scheme.

C. DWI signal representation: Cumulant expansion

1. To model or to represent?

The fundamental relation (3.4) is completely general, i.e.
sample- and model-independent. The goal of this subsection
is to outline the common way to represent the measured prop-
agator Gt,q. Note that representing the propagator is not the
same as modeling diffusion; this is the point where literature
is sometimes misleading, when using the term “modeling” for
both genuine models and signal representations.

A representation has little or no assumptions and has a very
broad scope of applicability. In other words, representing a
general Gt,q is akin to expanding it in a certain basis. Think
of the Taylor expansion, or the Laplace transform (a multiex-
ponential fit) as examples. As there are infinite ways to rep-
resent any continuous function, the choice of representation
is often dictated by convenience or tradition, and arguments
about what is the best representation sometimes resemble re-
ligious disputes.

A model of diffusion has concrete assumptions and tissue
parameters as inputs, and a very particular form for the diffu-
sion propagator Gt,q or its characteristics (such as the diffu-
sion coefficient, as described below).

The basis coefficients of a given representation can serve as
empirical parameters which may e.g. correlate with pathol-
ogy, i.e. they can be sensitive. It is often useful to use com-
monly accepted signal representations, such as the cumulant
expansion described below, when we are not yet sure about

the relevant tissue structure affecting our signal, but we still
would like to present our experimental results in the way that
can be useful for the future analysis.

However, representations by construction are not specific
— i.e. they cannot provide information about particular tis-
sue changes at a cellular level. To become specific (which
is usually much more difficult), one needs to develop meso-
scopic models of diffusion based on our knowledge of tissue
structure at the level of the diffusion length (1.3), examples of
which will be considered further, in Section V.

Both models and representations have their roles in diffu-
sion MRI data analysis, and it is very important to distinguish
between them.

2. The simplest case: Gaussian diffusion

Consider a uniform medium (e.g. a simple liquid), with
D(r) = D0 = const, so that the diffusion equation is given
by Eq. (2.4). Let us find its fundamental solution G(0)

t,r , i.e.
the one corresponding to a unit “packet” of random walkers
spreading from the origin for time t > 0. It is governed by
Eq. (2.4) with a unit source term

∂tG
(0)
t,r = D0∂

2
rG

(0)
t,r + δ(t)δ(r) . (3.5)

The evolution of the corresponding spin magnetization at r =
r0 would in this case be governed by Eq. (3.3) with Gt;rt,r0 →
G

(0)
t,r−r0 .
As Eq. (3.5) is the partial differential equation with constant

coefficients, it is readily solved by the Fourier transform

G
(0)
t,r =

∫
dω
2π

ddq
(2π)d

e−iωt+iqrG(0)
ω,q (3.6)

in d spatial dimensions. In the Fourier domain, Eq. (3.5) turns
to the algebraic equation

−iωG(0)
ω,q = −D0q

2G(0)
ω,q + 1 . (3.7)

Its solution is given by the Lorentzian spectral line shape

G(0)
ω,q =

1

−iω +D0q2
(3.8)

(recall, we are measuring the transverse relaxation in the ap-
plied gradient!). The inverse temporal Fourier transform of
the Lorentzian, calculated by closing the integration contour
in the lower half plane of the complex plane of ω, yields the
exponentially decaying signal

S(0)
q (t) = G

(0)
t,q ≡ θ(t) e−D0q

2t , (3.9)

where θ(t > 0) = 1 and θ(t < 0) = 0 is a unit step function.
A Gaussian propagator in q results in a Gaussian propagator
in r:

G
(0)
t,r =

θ(t)

(4πD0t)d/2
e−r

2/(4D0t) . (3.10)
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3. Cumulant expansion

Let us now go back to the general case of diffusion gov-
erned by Eq. (2.6). The propagator will then not be a simple
Gaussian; how should we characterize it in the general case?
Intuitively, we expect the packet spreading as some kind of
a bell-shaped curve; it turns out that there exists a century-
old general way to characterize such curves, often emerging
in statistics as probability density functions (PDFs), that devi-
ate from the Gaussian shape [24]. This representation for an
arbitrary PDF is called cumulant expansion [25, 26].

Consider the characteristic function (the Fourier transform)

p̃(k) ≡
〈
eikw

〉
=

∫
dw p(w) eikw (3.11)

for any PDF p(w). Its Taylor expansion in k generates the
moments mn ≡ 〈wn〉:

p̃(k) = 1 + ik 〈w〉+
(ik)2

2!

〈
w2
〉

+ · · · =
∞∑

n=0

(ik)nmn

n!
.

(3.12)
The cumulants are defined as the Taylor expansion coeffi-
cients of ln p̃(k):

ln p̃(k) = ik 〈w〉+(ik)2

2!

[〈
w2
〉
− 〈w〉2

]
+· · · =

∞∑

n=1

(ik)ncn
n!

.

(3.13)
The first cumulant c1 ≡ m1 is the mean, the second c2 =

m2−m2
1 is variance, the dimensionless ratio c3/c

3/2
2 is called

skewness, the dimensionless ratio c4/c22 is called kurtosis, etc.
We can see that the Gaussian distribution is characterized by
the first two nonzero cumulants and vanishing cn = 0, n > 2;
higher order cumulants effectively tell us how far our distri-
bution is from the Gaussian shape. Skewness is the measure
of its asymmetry relative to the mean, and kurtosis tells how
dominant are its tails relative to the tails of the Gaussian dis-
tribution.

Intuitively, the cumulants are more convenient than the mo-
ments, in that the higher-order terms improve our accuracy
of describing the bell-shaped PDF around its peak. For-
mally, cn is obtained from mn by subtracting the “trivial”
part, corresponding to combinations of the lower-order mo-
ments, such as the term −m2

1 in the definition of variance, or
c4 =

〈
(w −m1)4

〉
− 3c22 for the fourth-order cumulant.

A beautiful combinatorial relation expressing a moment
mn through cumulants of up to order n, called linked clus-
ter expansion derived by Mayer in the statistical physics con-
text [27] in 1941, and whose generalization is the basis of
the modern field theoretical description of condensed mat-
ter systems [28], is proven in ref. [26]. It generalizes re-
lations m2 = c2 + c21, m3 = c3 + 3c2c1 + c31, m4 =
c4 + 4c3c1 + 6c2c

2
1 + 3c22 + c41, by connecting the combi-

natorial coefficients to the number of possibilities of linking n
points into all possible clusters.

4. Cumulant expansion for the diffusion-weighted signal

To make connection between diffusion MRI and the general
theory [24, 25], we note that the fundamental relation (3.4)
between the diffusion propagator and the measurement can be
recast as an average, cf. Eq. (3.11), where the random variable
is the spin precession phase φ, and the averaging 〈. . .〉 is per-
formed both over the Brownian paths of a given spin and over
all spins in a voxel (the double average, cf. also Section IV
below):

Sq(t) =
〈
eiφ
〉
, (3.14a)

φ = −
∫ t

0

g(τ)r(τ) dτ =

∫ t

0

q(τ)v(τ) dτ, (3.14b)

q(t) =

∫ t

0

g(τ) dτ . (3.14c)

Here the surface terms in the integration by parts in
Eq. (3.14b) vanish under the balanced gradient condition∫ t

0
g(τ) dτ ≡ 0, and v = dr/dt is the molecular velocity.
The form (3.14) generalizes the narrow-pulse limit de-

scribed in Sec. III B above. In the case of arbitrary gradient
train g(τ), the diffusion-weighted signal Sq(t) is not equal
to the diffusion propagator for a given q and t. In gen-
eral, the diffusion-weighted signal is a functional of the gradi-
ent form g(τ), or, equivalently, of its “anti-derivative” q(τ):
S ≡ S[q(τ)].

Consider now the case of a sufficiently small diffusion
weighting parameter q = |q|. This is especially relevant for
clinical MRI, where diffusion gradients are limited. In this
case, the signal (3.4) over the time interval t can be found
within the Gaussian phase approximation [22, 26] which
amounts to keeping only first two cumulants:

S =
〈
eiφ
〉
≈ e−〈φ2〉/2 , 〈φ〉 ≡ 0 . (3.15)

The sample average of the phase vanishes, 〈φ〉 ≡ 0, due to
time reversal invariance in the absence of net flow, 〈v〉 = 0.
(Time reversal invariance actually implies that all odd mo-
ments of the phase vanish, 〈φn〉 = 0, n = 1, 3, 5, . . . .) As
a result, Eq. (3.15) yields

− lnS(t) ' 1

2

∫ t

0

dτ1dτ2 qi(τ1) 〈vi(τ1)vj(τ2)〉 qj(τ2) .

(3.16)
Here the Einstein’s convention of summing over repeating in-
dices i, j = 1, 2, 3 is implied. The signal depends on the total
duration t of the gradient train g(τ), and is a functional of the
diffusion-weighting (3.14c).

For uniform (but generally anisotropic) media,

〈vi(τ1)vj(τ2)〉 = 2Dijδ(τ1 − τ2) , (3.17)

where Dij are by definition the components of the symmetric
diffusion tensor. This leads to the anisotropic generalization
of the standard Gaussian expression (3.9) obtained above:

lnS ' −bijDij , (3.18)
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where the so-called b-matrix, defined as

bij =

∫ t

0

qi(τ)qj(τ) dτ , (3.19)

with b = tr bij called the b-value, is the commonly accepted
parameter characterizing the strength and the spatial arrange-
ment of the diffusion weighting.

When the diffusion is non-Gaussian, but we are using nar-
row pulses (3.2), we may represent Eq. (3.16) as

− lnS(t) ' qiqjt ·Dij(t) , Dij(t) =
〈δxi(t)δxj(t)〉

2t
,

(3.20)
where qi is the amplitude of the ith component of the vector
q defined after Eq. (3.2), δxi(t) = xi(t) − xi(0) is the dis-
placement along the ith coordinate axis, and Dij(t) are the
time-dependent components of the diffusion tensor.

The linear estimation problem (3.18) or (3.20) for the diffu-
sion tensor, referred to as the diffusion tensor imaging (DTI),
has been solved by Basser et al.[29]. It requires measurement
along at least 6 non-collinear diffusion directions in addition
to the b = 0 (unweighted) image. The parameter λ̄ ≡ 1

3 trDij

is called mean diffusivity; the fractional anisotropy

FA =

√
3

2

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

(3.21)

characterizes imbalance between (in general, time-dependent)
diffusion tensor eigenvalues λ1,2,3.

Likewise, the mapping of the kurtosis tensor, via the expan-
sion up to q4,

lnS ' −bĝiĝjDij +
b2λ̄2

6
ĝiĝj ĝkĝlWijkl (3.22)

called diffusion kurtosis imaging (DKI), has been introduced
by Jensen et al.[30]. Above, ĝi are the components of the
unit vector in the direction of the gradient g. The weights
for unbiased estimation of diffusion and kurtosis tensors for
non-Gaussian NMR noise were suggested recently [31].

We emphasize that the cumulantsDij ,Wijkl, . . . of the sig-
nal obtained via Taylor-expanding its logarithm in the (even)
powers of qi, or equivalently, in the powers of b, correspond
to the cumulants of the genuine molecular displacements r =
rt − r0 only in the narrow pulse limit (3.2), whenever the
precession phase φ = −qr. When the finite gradient pulse
duration δ is comparable to the time scale of the transient pro-
cesses (in the case of time-dependent diffusion coefficient and
higher-order cumulants), the measurement acts as a low-pulse
filter with a cutoff frequency ∼ 1/δ.

Even in the narrow-pulse limit (3.2), the phase diagram of
diffusion weighted imaging is two-dimensional (Fig. 2), char-
acterized both by the magnitude q and the diffusion time t
between the pulses. Generally, the b-value alone does not
uniquely characterize the measurement — unless the corre-
sponding cumulants are time-independent. Physically, this
corresponds to Gaussian diffusion in all non-exchanging tis-
sue compartments.

D(t)

beyond cumulant expansion

kurtosis (t)

q

t

higher order cumulants

...

diffusion time

g
ra

d
ie

n
t 

st
re

n
g

th

FIG. 2. The phase diagram of diffusion MRI is two-dimensional:
By increasing q one accesses the progressively higher-order diffu-
sion cumulants 〈(δx)2〉, 〈(δx)4〉 − 3〈(δx)2〉2, . . . , whereas the de-
pendence along the t-axis reflects their evolution over an increasing
diffusion length scale L ∼

√
tD(t). The b-matrix (3.19) alone does

not uniquely describe the diffusion measurement, unless diffusion in
all tissue compartments is Gaussian.

An interesting measurement scheme involving pairs of nar-
row pulses, has been proposed by Mitra in 1995 [32]. In
this case, the measurement contains information beyond the
single-particle diffusion propagator, since 〈e−iq1r1−iq2r2〉 6=
〈e−iq1r1〉〈e−iq2r2〉. However, multiple pulse measurements
are equivalent to a combination of single pulse measurements
up to O(q2), and provide unique contrast only at the level
O(q4) and beyond [33].

How many parameters do the successive cumulant tensors
have? A term of rank lc is a fully symmetric tensor, which can
be represented in terms of the so-called symmetric trace-free
(STF) tensors of rank lc, lc−2, . . . , 2, 0 [34]. Each set of 2l+1
STF tensors of rank l realizes an irreducible representation of
the SO(3) group of rotations, equivalent to the set of 2l +
1 spherical harmonics Ylm [34]. Hence, the total number of
nonequivalent components in the rank-lc cumulant is

nc(lc) =

lc∑

l=0,2,...

(2l + 1) =
1

2
(lc + 1)(lc + 2) . (3.23)

Suppose we truncate the cumulant series at the (even) term
of the rank lc. Thereby we determine all the parameters of
the cumulant tensors (diffusion, kurtosis, ...) of the ranks
2, 4, . . . , lc. This total number of parameters in the trun-
cated series is equal to

Nc(lc) =

lc∑

l=2,4,...

nc(l) =
lc
3

[
lc
2

+ 1

] [
lc
2

+ 2

]
+
lc
4

[
lc
2

+ 3

]

(3.24)
corresponding to Nc = 6, 21, 49, . . . for lc = 2, 4, 6, . . .
(we did not include the proton density S|b=0 in our counting).
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IV. DIFFUSION CHARACTERISTICS OF A
MACROSCOPIC SAMPLE. EFFECTIVE MEDIUM THEORY

In this Section, we take a step back from specifics of dif-
fusion MRI measurements, and focus on a connection be-
tween diffusion propagator acquired from a large volume (e.g.
voxel) and the statistical properties of the medium (tissue).

Consider a macroscopic sample with mesoscopic structure
(e.g. a tissue voxel), where diffusion is governed by our
main equation, Eq. (2.6). Consider for simplicity a statisti-
cally isotropic situation (i.e. low FA). Our macroscopic spatial
resolution by definition does not allow us to directly resolve
the contribution of water molecules from a particular part of
this sample to the overall NMR signal. Hence, the measure-
ment (3.4) effectively averages over the structural contribu-
tions “seen” by all the spins (molecules) in all parts of the
sample.

Our technical task is to relate the measurement to the pa-
rameters of the original Eq. (2.6). Loosely speaking, we want
to “average”, in some sense, this equation over the sample. Of
course, it is not Eq. (2.6), but its solution, the measured signal
(3.4), that is really being averaged. This is good news — oth-
erwise it would only be the sample average 〈D(r)〉 that would
matter. This is clearly not the case, and some mesoscopic fea-
tures of D(r) do manifest themselves even after acquiring the
signal from a macroscopic sample. Unfortunately, most of the
potentially interesting mesoscopic structural information gets
washed out for good. This is what makes the recovering, or
quantifying, the mesoscopic structural information a very dif-
ficult ill-posed problem.

The purpose of this Section is to establish a number of gen-
eral relations between the macroscopic diffusion metrics ir-
respective of a particular model of the mesoscopic structure,
and to provide connections with dispersive quantities which
emerge in the effective medium description of transport, di-
electric, magnetic and optical properties of structurally com-
plex media. This will be the most technical Section of these
notes. For the first reading, it would be possible to understand
most of the material in the subsequent Sections, at least on the
qualitative level, without going through all technical details
escalating towards the end of this Section.

A. Macroscopic measurement: The double average

Let us now look into the origins of a measurement out-
come from a macroscopic sample. The most commonly re-
ported metric is the diffusion coefficient defined via the mean
squared molecular displacement in a particular direction x̂ (cf.
Eq. (3.20)):

D(t) =
〈δx2(t)〉

2t
. (4.1)

Here δx(t) ≡ x(t) − x(t)|t=0. For the general case of
Eq. (2.6), both the propagator Gt;r,r0 and all of its cumulants
would depend on the initial point r0 [17]. In particular, in the
continuous limit, this propagator satisfies Eq. (2.6)

∂tGt;r,r0 = ∂r (D(r)∂rGt;r,r0) + δ(t)δ(r− r0) (4.2)

(i) Average over all paths orig from x0 

(ii) Average over all initial points r0 

Medium is “homogenized” within domains ~L(t) 
and ensemble averaged over larger length scales 

Establish local D(r0) 
coarse-grained  
over L(t) 

(xt � x0)2

D
(xt � x0)2

E
r0

D(t) =

D
(xt � x0)2

E
r0

2t

Measurement*=*double*average:*

FIG. 3. The double average: (i) over the Brownian paths, estab-
lishing the local value ofD(r)|L(t) coarse-grained over the diffusion
length L(t); (ii) over the ensemble, yielding the macroscopic diffu-
sion metrics, such as Eq. (4.1).

with a source term corresponding to Gt;r,r0 |t=+0 = δ(r− r0)
and Gt;r,r0 |t<0 ≡ 0, cf. Eq. (3.5). The current conservation
(2.1) ensures that the probability is conserved,

∫
drGt;r,r0 ≡ 1 (4.3)

irrespective of the initial point r0, for all t > 0.
The lack of translation invariance due to the presence of

the mesoscopic structure leads us to a subtle point regarding
taking the average 〈. . .〉 in the definition of the diffusion
coefficient (4.1) and other diffusion metrics acquired from
a macroscopic volume (voxel). Let us step back and realize
that, in principle, there are different equivalent ways of
measuring the diffusion coefficient. For instance, one can
directly record [35] many paths taken sequentially by a given
optically tagged molecule. In the case of NMR, we happen
to acquire the information about molecular displacements
from a macroscopic number of molecules in a given sample
(voxel) simultaneously. But in any case, to obtain the
sample diffusion coefficient, we need to subject the squared
displacement to the two averaging procedures (Fig. 3):

• (i) Averaging

(xt − x0)2 ≡
∫

drGt;r,r0 (x− x0)2 (4.4)

over the Brownian paths rt′ , 0 < t′ < t, originating from a
given point r0, with xt = rt · x̂ being the displacement along
chosen direction x̂. Most of those paths will be contained
within a domain of size ∼ L(t), the (local) diffusion length.
As Fig. 4 demonstrates (also cf. Sec. V below), this effec-
tively homogenizes the sample’s properties over a window of
size ∼ L(t), establishing a local “coarse-grained” value of
the diffusion coefficient D(r0)|L(t) = (xt − x0)2/2t which
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L = 0 µm, t = 0ms L = 3 µm, t = 4.5 ms L = 5 µm, t = 12.5 ms L = 10 µm, t = 50ms

L = 15 µm, t = 112.5 ms L = 20 µm, t = 200ms L = 40 µm, t = 800ms L = 60 µm, t = 1800 ms

FIG. 4. Diffusion as a homogenization process, as a result of the double average, cf. Fig. 3. An example of a medium with mesoscopic
structure was created by randomly placing black regions (disks) of two different radii, Rsmall = 1µm and Rlarge = 20µm, top left panel. To
obtain the snapshots of the medium as “seen” by the diffusing molecules, we used a Gaussian filter with width L/2, where L(t) =

√
2Dt, and

ignored the time dependence of D in the definition of diffusion length, setting it to a typical value D = 1µm2/ms for simplicity.

is smoother than the sharply varying one, D(r), that enters
the original Eq. (2.6).

• (ii) Subsequent ensemble averaging

〈δx2(t)〉 ≡ 〈(xt − x0)2〉r0 =

∫
dr

dr0

V
Gt;r,r0 (x− x0)2

(4.5)
over all initial points r0 within a macroscopic sample. As we
discuss below, given a large enough sample, this effectively
averages over all realizations of the structural disorder.

Generally, in a macroscopic measurement, it is the above
double average that is always present in any global diffusion
metric, e.g. the diffusion coefficient (4.1), or the signal (3.4)
and (3.14a). From now on, we will drop the averaging bar and
r0 and will use the usual 〈. . . 〉 notation for the double average
for brevity.

To illustrate the role of both averages (i) and (ii), consider
Fig. 4. A sample medium was created by randomly placing
black regions (disks) of two different radii. For the illustration
purposes, we can consider the situation when molecules can
travel everywhere, but the black regions are made of a mate-
rial with diffusion coefficient different from that of the white
background. As the diffusion time t evolves, the increasing
diffusion lengthL(t) acts as a window for the (approximately)
Gaussian filter, which homogenizes the properties over the
scale L as a result of the averaging (i), producing the increas-
ingly smoothly varying coarse-grained local diffusion coeffi-
cient D(r)|L(t). Hence, from the point of the molecules, in
this particular example, for time t & 50 ms the small disks
are practically invisible, i.e. their effect is indistinguishable
from a uniform “gray” medium with some effective diffusion
coefficient filling in the space between the large disks. Even-

tually, as t ≈ 2 s, the medium becomes almost completely
uniform, at which point the macroscopic (bulk) diffusion co-
efficient D∞ is approached. At each time instant, the averag-
ing (ii) in the definition (4.1) implies that the observed diffu-
sion coefficient is the sample average of the local D(r)|L(t).
In Section V, we will relate the time dependence of the ob-
served diffusion coefficient to the decreasing variance of the
local D(r)|L(t).

To summarize: The measured diffusion characteristics,
such as Eq. (4.1), describe a macroscopic sample as a whole.
They do not belong to any given Brownian path, but rather
emerge as a result of averaging (i) over all possible Brownian
paths that could be taken by a given molecule, and (ii) over
the initial positions of all molecules in a sample.

B. Diffusion equation in a macroscopic sample

In Sec. II, based on the conservation law and symmetry con-
siderations, we have derived Eq. (2.6) for the general case of
a spatially varying local diffusion coefficient. This equation is
valid at the mesoscopic scale, where the local value of D(r)
is already well defined, and onwards.

Here, we ask a different question: How would a diffusion
equation look at the level of a macroscopic sample (voxel)?

At first, this sounds like a dumb question: The correct equa-
tion (2.6) is already written, what else can one ask for? Well,
in reality, we want to know the solution to Eq. (2.6), and better
analytically than numerically. But it is truly difficult. In fact,
it’s even harder than it looks because one cannot in all hon-
esty write this equation down, i.e. precisely specify the local
values of D(r) at all points in space in a voxel at a microme-
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ter scale. It’s just impossible at the moment — we simply do
not know tissue properties so well! And, besides, cells are all
somewhat different and a voxel is so huge compared to a sin-
gle cell, that we would need literally millions of parameters to
specify the diffusion equation. Hence, Eqs. (2.6) and (4.2) for
a macroscopic tissue sample (voxel) are a complete mess.

Then, one can reasonably say, solving these equations is a
losing proposition, so we should all pack up and go home.

1. Disorder averaging and translation invariance

But suppose we are not in the position of giving up. (And
also, otherwise we wouldn’t have asked the above question to
begin with. For those who are impatient to see the answer, see
Eq. (4.19) below.)

What can make our lives easier? Fortunately, it is quite ob-
vious that, in order to interpret a macroscopic measurement,
we never need the solution of Eqs. (2.6) and (4.2) involving
all those millions of hard-to-specify parameters. Indeed, in
agreement with the averaging (ii) described above, any metric
acquired over the sample, including the full diffusion propa-
gator (the displacement PDF), cf. Eq. (3.4),

Gt,r ≡ 〈Gt;r0+r,r0〉r0 (4.6)

gets effectively averaged over all the initial points r0.
Remarkably, the ensemble-averaged propagator (4.6) is

much simpler than the unknown Gt;r,r0 , which is to say that
one difficulty (of performing ensemble average over all parts
of the voxel, item (ii) from Sec. IV A) mostly cancels out the
other one (the need to specify Eq. (4.2) precisely).

In particular, one notes that the propagator (4.6) has become
translation invariant after averaging over the initial point r0,
i.e. it depends only the displacement but not on the start and
end points separately (as does Gt;r,r0 ). This is the main sig-
nature of the averaging over r0, or, as physicists sometimes
say, of the disorder averaging. This is quite a general point,
valid not just for diffusion. One can imagine a typical disor-
dered sample with an irregular mesoscopic structure of the
same “origin”, or “kind”. Basically, think about particular
spatial configurations of this structure in different parts of the
voxel as taken from some probability distribution. If a voxel
is large enough, one can mentally split it into many smaller
parts; then, these different parts of the voxel would contain
different disorder realizations. Hence, averaging over the ini-
tial point r0 corresponds to averaging over all possible real-
izations (configurations) of the disorder. In fact, this is why
the averaging (ii) is called the ensemble averaging — we av-
erage over the ensemble of the disorder configurations of the
same general origin. One then says that disorder averaging
restores translation invariance. This is a somewhat different,
but often helpful, interpretation of the averaging (ii) and of
Eq. (4.6). Concrete examples of restored translation invari-
ance and calculation of the disorder-averaged propagator (4.6)
can be found in [16, 17, 36].

In terms of the disorder-averaged propagator (4.6), the net
result of the double average (i) and (ii) follows from Eqs. (4.5)

and (4.6) after the change of the integration measure drdr0 →
d(δr)dr0, where δr = r− r0:

〈δx2(t)〉 =

∫
d(δr)Gt;δr (δx)2 . (4.7)

The double-average of the higher-order displacement cumu-
lants is obtained in the same way. As a result, acquisition
over a macroscopic sample effectively means measuring the
disorder-averaged PDF (4.6) or, practically, its first few dis-
placement cumulants.

2. Dispersion due to heterogeneity

In Physics, we deal with disorder-averaged properties all
the time. Recall, for instance, electrodynamics, or optics, in
continuous media. We generally operate with the material pa-
rameters, such as the dielectric function ε, or the magnetic per-
mittivity µ, or the electrical conductivity σ, or the refraction
index n. The most important feature of all those quantities is
that they are dispersive, i.e. they depend on the frequency.

Probably the first known example of dispersion has been
spotted by Newton in his experiments with prisms. As un-
derstood centuries later, the observation of a rainbow after a
ray of white light passes through a prism (a signature of the
frequency-dependent refraction index), is a consequence of
a complicated atomic and mesoscopic structure of glass. In
other words, dispersion is a sign of “invisible” structural
complexity.

Consider a different well-known example: suppose we
drive an electric current through a material. In general, its
relation to the applied voltage, or to the electric field E, will
be dispersive [37–39]:

Jω = σ(ω)Eω . (4.8)

This is the familiar differential form of the Ohm’s law [38]. A
simpler example of the same phenomenon is an RLC circuit
where the admittance (reciprocal of the impedance) depends
on the frequency. A similar relation, Dω = ε(ω)Eω , exists
between the electrical induction D and field in a dielectric
[38], in an ionic solution, or in plasma [39]; or between mag-
netic induction and field in a para- or diamagnetic material
[38], etc.

In the time domain, the dispersive relation such as (4.8) sig-
nifies the delayed, or retarded response [40]:

Jt =

∫ t

−∞
dt′ σ(t− t′)Et′ , σ(τ) =

∫
dω
2π

σ(ω)e−iωτ .

(4.9)
This means that the current at time t is determined by the his-
tory of the applied voltage or field at earlier moments t′ ≤ t.

Clearly, the dispersion of material properties arise from the
“structure”. This structure is generally at the mesoscopic scale
(complex and spatially varying molecular properties causing
light refraction in glass, dielectric screeining, etc). Much like
for the case of diffusion described above, these dispersive met-
rics characterize a sufficiently macroscopic sample (there is
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no dielectric constant or refraction index for a single Silicon
atom but there is one for a piece of silicon).

Besides the temporal dispersion, there exists in general also
the spatial dispersion, i.e. a linear relation separately for each
spatial Fourier harmonic of, say, the current Jω,q, or the elec-
trical induction Dω,q, and of the electric field, so the material
characteristics depend both on ω and q, such as [37–39]

Jω,q = −σ(ω,q) iqΦω,q , (4.10)

where the electric field E = −∂rΦ → −iqΦ is given by
the gradient of the potential Φ.1 For a macroscopic sample,
q → 0, and the relation (4.10) can be expanded in the (odd)
powers of q, with σ(ω) ≡ σ(ω,q)|q=0 in Eq. (4.8).

All these dispersive material characteristics arise as a result
of averaging over the mesoscopic structure during a macro-
scopic measurement. They represent essentially what sur-
vives this (double) averaging, since almost all the details of
the atomic and molecular environment are washed out.

Note that, following the arguments of Sec. IV B 1, the no-
tation in Eq. (4.10) assumes that the space translation invari-
ance is restored, such that in real d-dimensional space this
corresponds to

Jt,r =

∫ t

−∞
dt′
∫

ddrσ(t− t′, r− r′)Et′,r′ , (4.11)

σ(τ, r) =

∫
dω
2π

ddq
(2π)d

σ(ω,q) e−iωτ+iqr . (4.12)

As the properties become homogeneous after the ensemble
averaging, one may assume the following point of view: let
us assume translation invariance in all our equations such as
Eq. (4.11), keeping in mind that all the (invisible) heterogene-
ity is what causes the spatial and temporal dispersion, absent
in a truly uniform sample. In effect, we supplemented the
real, horribly microscopically complex material by a fictitious
one which looks completely uniform, albeit having dispersive
dielectric and conductive properties, refraction index, disper-
sive diffusivity, etc. This is the effective medium theory (EMT)
way of thinking [9, 13, 16, 17, 37].

We can see that our problems in tissue biophysics are
not that different from the ones studied in condensed matter
physics, electrodynamics and optics. Similarly, we expect a
general dispersive dependence between the (diffusive) current
and the particle density; and similarly, most of the interesting
short-distance details will disappear for good.

So the question we need be asking, while modeling and
interpreting MRI metrics in tissues, is really the following
one: What part of the tissue complexity survives the averag-
ing due to the measurement in a macroscopic sample (voxel),
and what is its contribution to a few macroscopic dispersive
diffusion metrics which we can realistically measure?

1 The part of the current related to the contribution to E coming from the vec-
tor potential A is not essential for the spatial dispersion, hence we omitted
it in Eq. (4.10).

3. Conserved current and generalized Fick’s law

In Sec. II, we introduced microscopic density ψ and current
j. Now let us introduce the disorder-averaged quantities

Ψ(t, r) = 〈ψ(t, r)〉 , J(t, r) = 〈j(t, r)〉 . (4.13)

These are the quantities averaged over the ensemble of disor-
der realizations: Suppose we create a lump of density of “la-
beled” particles and observe its diffusive evolution hindered
by the mesoscopic structure. Now let us repeat the same ob-
servation many times, each time having a different realization
of the underlying mesoscopic “disorder” in D(r), such that
averaging over all of those realizations in Eq. (4.13) repre-
sents the averaging over our macroscopic sample.

The question we asked in the very beginning of Sec. IV B
is equivalent to the following one: What is the equation gov-
erning the evolution of Ψ(t, r)?

The current conservation (2.1) being an exact property, it
still holds for the averaged quantities, since the averaging can-
not possibly create or destroy molecules or spins:

∂tΨ = −∂r · J , (4.14)

which for the Fourier components reads as

ωΨω,q = q · Jω,q . (4.15)

It turns out [17] that it is the Fick’s law (2.3) that gets mod-
ified, becoming a generally dispersive relation (both in time
and in space) between the current and the density gradients:

Jω,r = −D(ω)∂rΨω,r +O(∂r∇2Ψω,r) , (4.16)

where the right-hand side contains all the odd-order gradients
of density. Equivalently, in both ω and q space,

Jω,q = −D(ω)iqΨω,q +O(qq2Ψω,q) . (4.17)

Note a similarity with Eqs. (4.10) and (4.11).
The general form of the Fick’s law (4.16) and (4.16) emerg-

ing after the disorder averaging makes D(ω) (together with
higher-order dispersive parameters in the above equation) a
central object in the effective medium description of diffusion
in disordered media [16, 17, 36, 41]. Indeed, combined with
the conservation law (4.15), it defines the disorder-averaged
diffusion equation

−iωΨω,q = −D(ω)q2Ψω,q +O
(
q4Ψω,q

)
(4.18)

in ω, q domain (cf. Eq. (3.7)), or equivalently

−iωΨω,r = D(ω)∇2
rΨω,r +O

(
∇4

rΨω,r

)
(4.19)

in ω, r domain, which incorporates the characteristics of the
mesoscopic restrictions that can be still quantified with a bulk
measurement. This is the answer to the question “How would
a diffusion equation look at the level of a macroscopic sam-
ple?” posed above. While Eq. (4.19) may look fairly abstract,
in order to obtain it, we have realized how the macroscopic
diffusion metrics emerge as a result of the signal acquisition
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over a sample (voxel), and have drawn parallels with previ-
ously studied physics paradigms. We also note that a similar
dispersive equation can be written for the sample’s magne-
tization when the local Larmor frequency Ω(r) entering the
Bloch-Torrey equation (3.1) is varying at the mesoscopic scale
[42]. Hence, the EMT approach naturally unifies the diffusive
and relaxational phenomena.

4. The self-energy part

Similar to Eqs. (4.18) and (4.19), one may ask for the corre-
sponding equation for the disorder-averaged propagator (4.6).
This is the solution for Eq. (4.18) with the unit source (corre-
sponding to 1ω,q ↔ δ(t)δ(r), cf. Eqs. (3.7) and (4.2)),

−iωGω,q = D(ω)q2Gω,q +O
(
q4Gω,q

)
+ 1 . (4.20)

We can rewrite this equation in the following form:

Gω,q =
1

−iω +D∞q2 − Σ(ω,q)
, (4.21)

where the self-energy part Σ(ω,q) describes all non-Gaussian
diffusion effects, i.e. deviations from the Gaussian bulk diffu-
sion propagator of the form (3.8)

G(0)
ω,q =

1

−iω +D∞q2
(4.22)

in a fully homogenized sample (cf. the longest-time snapshot
in Fig. 4). Technically, it is the expansion of the self-energy
part in the powers of q2,

Σ(ω,q) = [D∞ −D(ω)] q2 + Σ4(ω)q4 + . . . , (4.23)

that yields the dispersive corrections to the diffusion equation
(4.19) and the Fick’s law (4.17), Ref. [17].

5. The dispersive diffusivity

Let us for simplicity drop the higher-order terms in
Eq. (4.19), and focus on D(ω). It must provide a retarded
response,

Jt,r = −
∫

dt′D(t− t′)∇rΨt′,r (4.24)

in analogy with the conductivity in Eqs. (4.8) and (4.9). This
means that its temporal Fourier transform D(t), defined as

D(t) =

∫
dω
2π

e−iωtD(ω) , (4.25)

vanishes for t < 0, since the current Jt,r cannot emerge before
the lump of density Ψt′,r has been created. Indeed, one can
show [17, 37] thatD(t) is the Fourier transform of the retarded
velocity autocorrelation function:

D(t) ≡ θ(t) 〈v(t)v(0)〉 , (4.26)

with θ(t) a unit step function, cf. Fig. 5, and 〈. . .〉 is the double
average described above in Sec. IV A. This also means that
D(ω) is analytic (has no singularities) in the upper half plane
of the complex variable ω [17].

As a result of the averaging, therefore, the macroscopic
sample looks as if it were uniform but with the velocity au-
tocorrelator having memory,

〈v(t0 + τ)v(t0)〉 = D(|τ |) , (4.27)

〈v−ωvω〉 ≡
∫

dτeiωτ 〈v(t0 + τ)v(t0)〉 = 2 ReD(ω) .(4.28)

The above autocorrelator is independent of t0 due to time
translation invariance.

C. Back to diffusion MRI: The second-order cumulant

Let us now utilize an equivalent, and often more convenient
way to represent Eq. (3.16), in terms of Fourier transformed
quantities introduced above, such as qω =

∫ T
0

dt eiωtq(t):

− lnS(T ) ' 1

2

∫
dω
2π

q−ω 〈v−ωvω〉 qω . (4.29)

(Here we dropped spatial indices focusing on the isotropic
case.) The velocity autocorrelator in the frequency represen-
tation is defined as in Eq. (4.28). The representation (4.29)
underscores that, knowing the correlator 〈v−ωvω〉, one can
evaluate the diffusion-weighted signal (3.16) up to O(q2) for
any gradient waveform g(t). Conversely, by selecting a par-
ticular form of q(t) according to its Fourier representation qω ,
one effectively allocates a larger or a smaller weight to partic-
ular Fourier harmonics 〈v−ωvω〉 contributing to the measured
signal (4.29), Ref. [41, 43].

There are two advantages of working in the frequency rep-
resentation (4.29). From the practical standpoint, a single in-
tegral in ω is simpler than a double integral in t. This re-
duction is due to the time translation invariance not explic-
itly utilized in Eq. (3.16). From the fundamental standpoint,
〈v−ωvω〉 is directly related, via Eq. (4.28), to the disper-
sive diffusivity D(ω) entering the Fick’s law (4.16) discussed
above, cf. Fig. 5.

As a result, the knowledge of D(ω) allows one to find the
second cumulant contribution to the signal attenuation for any
pulse sequence g(t) via Eq. (4.29):

− lnS(T ) '
∫

dω
2π

q−ωD(ω)qω . (4.30)

Here, only ReD(ω) contributes, as ImD(ω), odd in ω, yields
zero after being integrated with an even function q−ωqω =
|qω|2. Fortunately, ImD(ω) does not contain additional in-
formation as it can be restored using the Kramers – Kronig
relations [40]. As we show below, it may be useful to work
with the analytic function D(ω) (in the sense of the complex
variable ω), rather than with its non-analytic real part.

The dispersive diffusivity can be obtained exactly from the
narrow-pulse PFG diffusion coefficient (4.1) as

D(ω) = D0 +

∫ ∞

0

dt eiωt∂2
t [tD(t)] , (4.31)
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D
(ω) =

D
0 + ∫

∞
0 dt e iω

t∂ 2
t [tD

(t)]

D
(t) = − 1

t
∫
dω2π e −

iω
t D

(ω
)

(ω
+

i0) 2

Fourier
transform

D(t) = ∂ 2
t [tD(t)]

D(t) ≡ θ(t)〈v(t)v(0)〉D(t) ≡ 〈x2〉/2t

Re

D(ω)

Im D(ω):
Kramers-
Kronig

Any sequence:

− lnS ≃
∫

dω
2π q−ωD(ω)qω,

q(t) = γ
∫ t

0
g(t ′)dt ′

D(t) = 1
t

∫ t

0
dt ′(t − t ′)D(t ′)

OG:
Re D(ω)

FIG. 5. General relations between the three diffusion metrics: D(ω), D(t) and D(t), and the signal attenuation, from Ref. [41].

where D0 ≡ D(t)|t=0 (cf. Eq. (D3) in Appendix D of
Ref. [17]).

The three diffusion metrics: the dispersive diffusivity
D(ω); the retarded velocity autocorrelator D(t); and the
time-dependent diffusion coefficient D(t) contain the same
amount of information about the mesoscopic structure,
and thus can be expressed via each other [17, 41], as illus-
trated schematically in Fig. 5.

D. Oscillating gradients

A comprehensive diffusion-weighted measurement must
provide a way to obtain the diffusivity D(ω), or the corre-
lator 〈v−ωvω〉, for all ω. From this point of view, the oscil-
lating gradients (OG) method, with g(t) = g0 cosω0t, is the
easiest one to interpret, as in the limit of the large number
N = ω0T/2π � 1 of oscillations,

qω =
iπγg0

ω0
[δ(ω − ω0)− δ(ω + ω0)]

effectively selects the ω0 component 〈v−ω0
vω0
〉, so that

− lnS(T )|g(t)=g0 cosω0t '
(γg0)2 T

2ω2
0

· ReD(ω0) . (4.32)

Here we used δ(ω)|ω=0 = T/2π from the Fourier representa-
tion of δ(ω). As a result, it is ReD(ω) that is measured via
the OG techniques [17, 41]. In the above equation, the atten-
uation over each oscillation period is accumulated, such that
the signal (4.32) can be represented as

S = e−b·ReD(ω0) with b = Nb1 , b1 =
π(γg0)2

ω3
0

.

(4.33)

For the dispersive D(ω), the b-value alone does not define the
measurement: the same value, achieved with different oscilla-
tion frequencies ω0, will yield different results for S.

Remarkably, the signal S is also sensitive to the initial
phase ϕ of the oscillation gϕ(t) = g0 cos(ω0t− ϕ), yielding

− lnS(T )|gϕ(t) '
(γg0)2 T

ω2
0

·
[

1

2
ReD(ω0) + sin2 ϕ ·D(T )

]
,

(4.34)
where D(T ) ' D∞ ≡ D(ω)|ω→0 = D(t)|t→∞ practi-
cally is the tortuosity asymptote, since the latter is typically
reached over the sufficiently long total measurement time T .
Physically, the initial phase ϕ leads to the admixture of the
PFG attenuation over the time T due to the nonzero value of
qω|ω→0 ∝ sinϕ, cf. Ref. [44] for ϕ = π

2 .
Equation (4.32), as well as its more general counterpart

(4.34), link the diffusive response function D(ω) of any
medium, which enters the generalized Fick’s law (4.16), to
the OG attenuation with N � 1 oscillations.

In Ref. [41], the above relations were used to relate the
universal short-time behavior [45] of the diffusion coefficient
D(t) (discussed below in Sec. V), to its high-frequency coun-
terpart, D(ω), measurable with OG. The links between the
different equivalent diffusion metrics outlined in Fig. 5 were
explicitly demonstrated for this particular problem.

V. TIME-DEPENDENT DIFFUSION

Let us now demonstrate on a few examples how the
diffusion metrics of a macroscopic sample acquire time-
dependence as a consequence of the mesoscopic structure,
Fig. 1, exemplified by Eq. (2.6) containing the effects of both
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FIG. 6. (A) In general, the diffusion tensor eigenvalues depend on time as a result of the mesoscopic tissue structure. As an example, the
pronounced time dependence of the eigenvalues transverse to muscle fibers between t = 30 ms and 800 ms has been observed in Ref. [46].
(B) The time dependence at short and long times is due to qualitatively different reasons.

slowly varying local diffusivity (e.g. different intrinsic diffu-
sivity in cytoplasm and in the extracellular fluid), as well as
the sharp variations corresponding to cell membranes.

Increasing the time t amounts to exploring sample’s com-
plexity over a set of increasing length scales L(t) =
〈δx2(t)〉1/2. The presence of the mesoscopic structure slows
down the diffusion, with qualitatively different physical rea-
sons behind the short- and long-time behavior of the diffusion
metrics, Fig. 6.

A. Short times: Net amount of the restrictions

At t = 0, each random walker only senses its own microen-
vironment with a strongly varying local diffusion coefficient
D(r). The Brownian path averaging (i) of Sec. IV A is then
trivial, and the ensemble averaging (ii) yields a sample aver-
age

D0 ≡ D(t)|t=0 = 〈D(r0)〉r0 . (5.1)

At short times, the decrease in D(t) is caused by the local
restrictions. Suppose a sample is filled with randomly oriented
walls with the surface-to-volume ratio S/V . Since, after the
averaging (i), the diffusion effectively vanishes inside a layer
of thickness ∼ L(t) along the walls, the ensemble averaging
(ii) yields the −

√
t correction [45]

D(t) ' D0

(
1− 4

3d
√
π
· S
V

√
D0t

)
. (5.2)

The
√
t term, which counts net amount of the restrictions irre-

spective of their positions, has been used to quantify the ratio
S/V in samples filled with NMR-visible molecules, such as
water and other liquids [47–49], and polarized 129Xe gas [50]
in porous media, as well as water in packed erythrocytes [51].

B. Long times: Structural correlations

Over time, the random walkers probe the spatial organiza-
tion of the sample’s microstructure. The time-dependence of
the diffusion metrics becomes intricately tied to an increas-
ingly large number of structural characteristics. Finding, say,
D(t) or D(ω) analytically in a realistic complex sample is an
intractable problem. Technically, it amounts to including the
contributions from the spatial correlations of the local diffu-
sion coefficientD(r) and of the positions of all restrictions up
to an infinitely high order.

As it has been recently shown [36], this problem greatly
simplifies in the long time limit, when the diffusion coefficient
approaches its macroscopic value

D∞ ≡ D(t)|t→∞ = D(ω)|ω→0 . (5.3)

In this case, almost all microscopic complexity can be lumped
into the value of D∞, which we assume to be empirically
known from a long-t measurement. The only relevant struc-
tural details will be those responsible for the large scale
sample heterogeneity, or long range structural correlations.
These correlations will manifest themselves in the specific
values of the exponent ϑ in the power law tail of the molecular
velocity autocorrelation function (4.26)

D(t) ∼ t−(1+ϑ) , ϑ > 0 . (5.4)

Practically, the tail (5.4) can be identified in the way the time-
dependent instantaneous diffusion coefficient

Dinst(t) ≡
∂

∂t

〈δx2〉
2

=

∫ t

0

dt′D(t′) (5.5)

approaches the finite bulk diffusion constant D∞,

Dinst(t) ' D∞ + const · t−ϑ . (5.6)

Proc. Intl. Soc. Mag. Reson. Med. 23 (2015)    



15

The instantaneous diffusion coefficient is related to the stan-
dard diffusion coefficient (4.1) measured with narrow pulses
as follows:

Dinst(t) = ∂t [tD(t)] . (5.7)

1. Time-dependent diffusion at long times: A simple example

To understand where the long range structural correlations
enter the picture, consider a simple example of a (disordered)
mesoscopic structure in d = 1 dimension, Fig. 7: randomly
positioned identical barriers with permeability κ, Eq. (2.7),
and mean density n̄, which restrict the diffusion with a free
diffusion constant D0.

First let us consider the simplest problem, the tortuosity
limit t → ∞. In this limit, the diffusion becomes Gaussian
with macroscopic diffusion constant [16]

D∞ =
D0

1 + n̄D0

κ

. (5.8)

This one-dimensional result is a particular case of a more gen-
eral exact one-dimensional relation

1

D∞
=

〈
1

D(x)

〉
(5.9)

between the tortuosity limit D∞ and any spatially varying lo-
cal diffusion coefficient D(x). One can derive Eq. (5.9) di-
rectly, but it is instructive to understand it using the Einstein
relation [9] between dc conductivity σ and the diffusion con-
stant, σ ∝ D. A segment of length l with diffusion constant
D is analogous to a resistor with resistivity ρ ∝ 1/D, corre-
sponding to the resistance R = l/D (we dropped the inessen-
tial proportionality coefficient in the Einstein relation as it will
cancel out anyway). As resistances add up in one dimension,
R =

∫
dx ρ(x), it is the resistivity, as well as the inverse dif-

fusivity, that gets averaged, yielding Eq. (5.9).
Now, to obtain Eq. (5.8), we note that based on the defini-

tion (2.7), a barirer corresponds to a resistor with dc resistance
lm/Dm = 1/κ [16]. Hence, the resistance of a segment of
length L with N barriers in series is given by L/D0 + N/κ,
yielding the macroscopic diffusion constant (5.8) in the limit
of N →∞, L→∞, and N/L = n̄.

Now let us consider long, but finite times t, which corre-
spond to the diffusion length L(t) ' √2D∞t � ā, where
ā = 1/n̄ is the mean barrier spacing. We will apply the double
average of Sec. IV A implied in a macroscopic measurement.

The local averaging (i) results in the diffusing molecules
homogenizing, or coarse-graining the line into domains of
size∼ L(t), similar to the two-dimensional example of Fig. 4.
Crudely speaking, this can be represented as splitting the line
into segments of length L(t). Hence, the averaging (i) estab-
lishes the local “average” (or, more precisely, coarse-grained)
diffusion coefficient D(x)|L(t) ≈ Dj of each segment, Fig. 7.
The problem now looks as if, instead of the original barriers,
we have segments with slightly different local diffusivities. It
is important to note that they are slightly different, because the

measured Dinst(t) 

Long-time limit of Dinst(t) 
1-dim example: random permeable barriers (membranes) 

D1 D2 D3 

After coarse-graining: Slightly different Dj due to fluctuations in the # of barriers 

Fluctuation correction at a given 
diffusion length scale L(t); decreases 
with time (“homogenization”)  

Add up “resistances”, find so that  

Dinst(t) ≡ �Dj� � D∞ +
�(δDj)

2�
D∞

FIG. 7. The qualitative picture for the origin of the time dependence
of the diffusion coefficient at long t

numbers of barriers in each segment is slightly different from
n̄L(t) due to the structural fluctuations (disorder in barrier
positions). This is where these fluctuations, and the amount
of disorder in a sample, begin to matter.

Let us now apply the ensemble average (ii). The tortuos-
ity asymptote is still given by Eq. (5.9), albeit now it must
be calculated using the coarse-grained D(x)|L(t) (involving,
approximately, the average 〈1/Dj〉). What is essential is that
the tortuosity limit D∞ is independent of our mental coarse-
graining procedure. Therefore, the left-hand side of Eq. (5.9)
does not depend on t. Hence, the right-hand side must be t-
independent, too! Let us find it. Expanding up to the second
order in the local deviations δD(x)|L(t) = D(x)|L(t) − 〈D〉,

1

D∞
=

〈
1

D(x)

〉
=

〈
1

〈D〉+ δD(x)

〉
' 1

〈Dj〉
−
〈
(δDj)

2
〉

〈Dj〉3
,

where all the terms correspond to a particular coarse-graining
scale L(t) (segment size), and 〈δDj〉 ≡ 0. Note that both the
mean 〈Dj〉 over the segments and their variance

〈
(δDj)

2
〉

both depend on t, but the above combination is time indepen-
dent, as it corresponds to 1/D∞.

What do we measure? A rigorous calculation [36] shows
that it is the mean

Dinst(t) ≡ 〈D(x)〉 |L(t) = 〈Dj〉 (5.10)

that corresponds to the macroscopic instantaneous time-
dependent diffusion coefficient (5.5). Expressing Dinst(t) via
D∞ and the variance

〈
(δD(x))2

〉
|L(t) =

〈
(δDj)

2
〉
, we ob-

tain

Dinst(t) ' D∞ +

〈
(δD(x))2

〉
|L(t)

D∞
. (5.11)

Above, we discarded terms higher-order in the variance〈
(δD(x))2

〉
|L(t), considering the latter to be small at suf-

ficiently long t (corresponding to sufficiently large coarse-
graining window L(t)).
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FIG. 8. Time-dependent diffusion distinguishes between structural
complexity classes in one dimension, represented by the placement
of identical barriers with permeability κ and the same mean density
n = 1/ā, from Ref. [36]. (A) Order (red), hyperuniform disorder
(green), short-range disorder (blue), and strong disorder (magenta).
(B) The barrier densities have qualitatively different large-scale fluc-
tuations, reflected in the small-k behavior of their density correlator
Γ(k) ∼ kp (see text). (C) Numerical results confirming the relation
(5.13). The time-dependence (5.5) clearly distinguishes between the
four arrangements, while the value D∞ is the same for all of them.
The dashed lines are the exact power laws, and the exponential de-
crease is from the exact solution; τr = ā/2κ.

We observe that the deviation of Dinst(t) from its t → ∞
limitD∞ is given by the variance of the distribution of coarse-
grained diffusivities homogenized at the scale L(t). As time
increases, this variance decreases due to self-averaging, and
the above procedure becomes asymptotically exact. The re-
sult (5.11) is corroborated by a rigorous calculation, and is
qualitatively similar in dimensions d > 1.

How do we relate the time dependence (5.11) to structure?
Let us recall that the coarse-grained D(x)|L(t) depends on the
coarse-grained local barrier density n(x). Hence, its variance
is proportional, for small deviations n(x)−n, to a typical den-
sity fluctuation

〈
(δn)2

〉
|L(t) of the restrictions in a segment

of size L(t). The latter fluctuation, in the case of Poissonian
disorder (uncorrelated barriers) scales as 1/L(t) ∼ t−1/2 ac-
cording to the central limit theorem. As a result, we obtain that

when barrier positions are uncorrelated, the instantaneous dif-
fusion coefficient approaches its macroscopic limit as t−1/2:

Dinst(t) ' D∞ + const · t−1/2 . (5.12)

We can see that for Poissonian (uncorrelated) arrangement
of the structure (barriers), the dynamical exponent entering
Eq. (5.6) is ϑ = 1/2.

2. Classification of structure based on long-range correlations

Equation (5.12) provides an intuition behind a fairly general
statement [36]: the dynamical exponent ϑ in Eq. (5.6)

ϑ = (p+ d)/2 (5.13)

is related to the statistics of large scale structural fluctua-
tions. This statistics is described in terms of the structural
exponent p characterizing global structural organization in d
spatial dimensions. The structural exponent p determines the
Γ(k)|k→0 ∼ kp behavior of the Fourier transform of the corre-
lation function Γ(r) = 〈n(r + r0)n(r0)〉r0 for the underlying
microstructure. Hence, p characterizes global structural com-
plexity, taking discrete values robust to local perturbations.
This enables the classification of the types and topologies of
the mesoscopic disorder, such as shown in Fig. 8 in dimension
d = 1. In particular, the dependence (5.12) indeed follows
from the structural exponent p = 0 (short-range disorder) in
d = 1, blue curves in Fig. 8.

Relation (5.13) provides a way to determine the exponent
p and, thereby, the structural complexity class, using any type
of bulk diffusion measurement. Local properties affect the
coefficients, e.g. the values of D∞ and the prefactor of t−ϑ in
(5.5), but not the exponent ϑ. The latter exponent is universal,
i.e. is independent of microscopic details, and is robust with
respect to variations between samples of a similar origin.

VI. OUTLOOK

The overarching goal of these notes was to present diffusion
MRI as a vibrant scientific field which is actively developing
by drawing on remarkably deep connections to more estab-
lished branches of physics, such as statistical and condensed
matter physics. It is fascinating to realize that the methods of
studying transport in complex systems in a completely differ-
ent context [8–15] appear to be increasingly useful to quanfity
mesoscopic tissue properties noninvasively. In this respect,
we are witnessing a kind of a “phase transition” in our field,
where the paradigm is shifting from empirical correlations
to biophysical parameters characterizing mesoscopic struc-
ture of tissues, such as spatial arrangement and correlations
of cells, membrane permeability and other parameters. While
the nominal spatial resolution of human MRI is unlikely to
enable direct imaging of at the cellular level, the future in-
novation will be in many ways determined by deepening of
our fundamental understanding of the link between diffusion
measurements and tissue structure.
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