
 
 Pre-requisites: A course in quantum mechanics, at the intermediate level, is 
required for a decent understanding of the material here.  Readers or auditors without this 
background will find difficult going. Beyond this, a good course in linear algebra, and 
some familiarity with the Bloch equations are needed. 
 A few introductory remarks: the theory of quantum angular momentum is closely 
tied to the quantum theory of rotations (1, 2).  That is, an angular momentum operator, 
e.g. Lz , represents an infinitesimal rotation about the z axis of a chosen coordinate 

system.  A rotation of finite magnitude can be considered the composition of many 
infinitesimal rotations; mathematically this is expressed by complex exponentiation of the 
angular momentum operator.  
 For an electron, we distinguish between orbital angular momentum, arising from 
the trajectory of its center of mass, and spin angular momentum,  associated with no 
particular motion, but which is an intrinsic property of the electron itself (3).  Certain 
nuclei also possess spin, rendering them susceptible to study by magnetic resonance. 
 The quantization of orbital angular momentum for atomic electrons is described 
by spherical harmonics, whose order - written conventionally as l-- takes the values of 
all positive integers, starting with 0.  The square of the angular momentum l  is given by 
l(l +1),  and the z component takes the values m = l, l −1, l − 2,...− l , that is, descending 
in steps of unity.   
 Although the discovery of spin angular momentum is tied to atomic spectroscopy, 
the famous Stern Gerlach experiment (4) affords the clearest illustration of its existence. 
Passage of a beam of atomic hydrogen, in its ground state, through an inhomogeneous 
magnetic field, gives a pair of spots on a detection screen, due to splitting of beam by the 
magnetic moment of hydrogen.  Since the unpaired 1s electron of hydrogen has zero 
orbital angular momentum,  the moment must be ascribed to an intrinsic angular 
momentum of the electron, which we now call spin.   The presence of a pair of dots, 
suggests that the two components of z-directed angular momentum, must have the values 
±1 2, by analogy with orbital momentum, which dictates that the decrement should be 
unity.  In Dirac bracket notation (5), the spin states corresponding to the two detected 
dots are represented the  kets (so called)  and .  In Hilbert space these may be 

written as two-vectors: 

      and  . 

These two-component vectors are also referred to as spinors, and are the state vectors for 
the spin component of particles of spin 1/2. 
 As an aside, the original Stern-Gerlach experiment was done with atomic silver, 
whose presence was undetectable until examination of the dis-assembled apparatus by 
Stern (a smoker of cheap cigars) revealed two black dots of silver sulfide, formed by the 
hydrogen sulfide in the smoke on his breath. 
 Certain nuclei also possess the property of spin, particularly the proton, a particle 
of spin 1/2 with which we are particularly concerned.  Nuclear spin was also discovered 
via atomic spectroscopy, but its clearest demonstration was through the Rabi molecular 
beam experiments (6), which combine features of the Stern-Gerlach experiment with the 
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radiofrequency methods that have come to be common in magnetic resonance.  
Unfortunately we have not  space for a detailed treatment. 
 Then we seek a set of Hermitian operators, acting upon the spinors, to describe a 
particle of spin 1/2; these will be of dimension two, over the field of complex numbers, 
and we arrive at the familiar Pauli matrices:  
 

  , , and .   

 
is readily seen that any 2x2 Hermitian matrix can be formed as a real linear combination 
of the Pauli matrices plus the identity matrix.  Note that the two spinors  and  are 

eigenvectors of , with eigenvalues ±1. The Pauli matrices are then converted into the 

spin operators Sx , Sy , and Sz ,  by the simple expedient of scalar multiplication by 1/2.  

Thus we get  
 ,  ,   .  
When the Pauli matrices are so multiplied the eigenvalues of the spinors become ±1 2.    
 The eigenvalues for the other Pauli matrices, and , may be gotten by direct 

calculation, but we will prefer quantum rotation,  as a more difficult, but more 
educational means for obtaining these.  Our approach is intuitive and heuristic.  Inasmuch 
as the to two spinors  and represent spins with oppositely polarized z components, 

we surmise that their sum, the normalized linear combination could 

represent a spin tipped by an angle of  and lying along the x axis of a chosen 
coordinate system.  We then seek a rotation matrix R  that would perform this operation: 
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This leads immediately to: 
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that is,  where 1 is the unit  

matrix of dimension two.   The reader may verify that the vectors resulting from 
multiplication by this matrix of  and  are in fact the eigenvectors of , with 

eigenvalues ±1.  We then postulate the matrix for a rotation about y of an arbitrary angle: 

, and by extension, for rotation about x as  
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.  Then clearly, rotation through about an arbitrary 

axis n  whose direction cosines are nx ny nz
⎡
⎣⎢

⎤
⎦⎥

 is given by , 

where the dot product is of n with a vector comprising the three Pauli matrices.  Although 
we will not explain the details, the half-angles in the rotation matrices arise from the 
multiplier of 1 2 introduced above. 
 With the rotation matrices in hand, we now demonstrate interconvertibility of the 
Pauli matrices are by unitary transformation. For example, for a rotation of  by an 

angle  about the y axis, we have, using the transformation matrix above: 
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That is: , by the usual machinery of similarity (in this instance unitary) 

transformation.  For a general rotation of  about y, using the transformation matrix  

given above, we get: 

 

that is, the half angles disappear and the result is exactly similar to that obtained for 
rotation of a z-directed unit vector through the same angle about the y axis.  
 The reader will easily supply examples, to further illustrate what we have shown-- 
namely that the Pauli matrices transform among themselves like vector components; in 
particular, the troublesome half-angles, present in the transformation of spinors, now 
disappear. 
 Now in general, the vector nuclear magnetic moment for a nucleus of spin 1/2 
may be written in operator form as a linear combination of Pauli matrices: 

    

where the ni's are direction cosines, the ei's are unit vectors, γ is the gyromagnetic ratio, 
and we have used the usual reduced Planck constant.  
Note that we have here placed the essential factor of 1/2 outside the summation.   
 This quantum expression for the nuclear magnetic moment provides a link to the 
classical Bloch equations (7, 8), which describe the motion of the nuclear magnetization, 
i.e. the magnetic moment per unit volume.  Given the widespread use of the Bloch 
equations for classical calculations of NMR dynamics, we may safely assert that all 
practical quantum mechanical computations of spin dynamics are best performed with the 
magnetic moment and Pauli matrices, rather than with spinors.   
 We now consider briefly how practical rotations are produced in the laboratory. 
Starting with the expression for the energy of a magnetic moment in a uniform magnetic 
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field, , we stipulate that B comprises a static component directed along the z 
axis, and an oscillatory component along x.  Confining our attention to the interaction 
with oscillatory field, which we call BRF , we write: , where the 

cosine term contains the angular frequency of the oscillatory field.  Note the presence of a 
Pauli matrix means that this expression, considered as a quantum operator, is the 
generator of an infinitesimal rotation. 
 This term is usually treated semi-classically, i.e. by writing the magnetic moment 
quantum mechanically (as above) in terms of the appropriate Pauli matrices, and leaving 
the field in its classical form.  The lack of a fully quantum mechanical treatment -- which 
should include both spins and field-- is hindered by the difficulty of quantizing what is 
called the 'near', as opposed to the 'far' or 'radiation' field.  However, recent work (9) has 
shown how a fully quantum mechanical treatment is possible, quantizing not the field, 
but the LC oscillator comprising the NMR probe, or antenna.  Time permitting, a brief 
discussion of this work may be presented.  One difficulty arises in that the fully quantum 
mechanical operator is no longer a generator of an infinitesimal rotation, even though the 
spins do rotate under its influence. 
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