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Highlights 
 

• Understanding the form-function relationship of the knee joint in injury and disease 
• Computational modeling to predict function from form 
• Population modelling with medical imaging data – new methods and insights 
• The Musculoskeletal Atlas Project – an anatomical and functional atlas of the 

musculoskeletal system 
• Testing medical devices using the ‘Virtual Clinical Trial’ 

 
Talk title: Techniques: Joint Mechanics & Gait  
 
TARGET AUDIENCE: Those interested in musculoskeletal imaging and knee joint function 
 
OUTCOME/OBJECTIVES: To provide an overview of computational methods to understand 
the structure-function relationship of the human tibiofemoral and patellofemoral joints and 
describe international efforts to build population models of the musculoskeletal system for 
the virtual testing of medical devices.  
 
BACKGROUND: There is an intimate relationship between the form and function of synovial 
joints, which is evident in the complex geometry, material properties, motion and forces in 
the tibiofemoral and patellofemoral joints. Understanding this relationship is critical to 
diagnosing and preventing injury and disease as well as designing interventions or assistive 
devices to treat musculoskeletal disorders. Computational models have the potential to 
predict joint function in terms of kinematics, forces, and stresses of the various 
musculoskeletal tissues [1]. However, the ability of musculoskeletal models to predict 
outcomes is dependent on capturing key anatomical features and describing appropriate 
loads and boundary conditions. Image-based subject-specific models of the musculoskeletal 
system are capable of accurately estimating in vivo joint loads and show promise for clinical 
use [2]. However, creating subject-specific models is time-consuming and requires high 
levels of expertise. Also, there is often a ‘disconnect’ between models used to investigate 
mechanics and rigid body models to estimate muscle forces. To address these issues, we 
have developed the Musculoskeletal Atlas Project (MAP), an anatomical and functional atlas 
of the musculoskeletal system. Our aim is to produce a tool to rapidly generate subject-
specific models for computational modelling.  
 
METHODS: We created a python-based software platform (Fig 1, the MAP Client) to 
facilitate segmentation and meshing of musculoskeletal structures. Users specify their 
‘workflow’ using a drag-and-drop interface and a simple plug-in architecture facilitates 
customisation and community engagement. Active Shape Models derived from large image 
datasets guide the segmentation or scale existing mesh templates to match experimental 
data [3]. The initial anatomical population was derived from 320 clinical CT scans (the 
Melbourne Femur Collection) and includes surface meshes of the major lower limb bones 
and muscles. The mesh fitting method deals with sparse data and ensures anatomically 
feasible solutions when scaling a template mesh to match markers from motion capture. The 
subject-specific meshes exported from the MAP Client can be re-meshed for mechanics 
simulations or used to create anatomically detailed OpenSim musculoskeletal models. 
Medical imaging data can be saved along with the resulting models in the MAP Database, 
which is built on the Physiome Repository (models.physiomeproject.org). The web-based 
MAP Database supports access control, version tracking, and facilitates annotation and 
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searching via the MAP Query tool. Our long-term vision is to foster a community of MAP 
users to accelerate the clinical use of computational models.  
 

 
 
Figure 1. MAP Framework. The MAP Client imports images and functional data and 
facilitates segmentation meshing using the MAP Database population. A MAP Query tool 
can determine anatomical features across the population. Meshes exported from the MAP 
Client are compatible with various simulation environments. 
 
 
RESULTS & DISCUSSION: This talk will draw on examples from large-scale research 
studies that have used image-based computational models to investigate non-contact knee 
ligament injury [4,5] and patellofemoral pain [6-13]. In particular, relationships between joint 
dimensions, muscle forces, articulating congruity, and cartilage and bone stress will be 
discussed. Novel, population-based models will also be presented to illustrate their potential 
use in assessing orthopaedic implants in ‘virtual clinical trials’ and creating surrogate models 
for use in real-time gait retraining [14-17].  
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Upon completion of this course, participants should be able to: 

◦ Discuss the role of joint mechanics and gait in relation to knee ligament injury, 
patellofemoral pain, and medial tibiofemoral osteoarthritis 

◦ Understand the framework of the Musculoskeletal Atlas Project 
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