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Introduction

One of the intriguing features of MRI is that we image a 2D vector object: the projection of
a 3D magnetization vector onto a plane perpendicular to the main magnetic field.

This 2D vector object is conveniently described using complex numbers, and hence the
MRI signal processing and reconstruction can best be discussed in terms related to the
manipulation of complex valued data.

In this lecture we present the mathematics behind MR signal generation, spatial encoding,
data acquisition, signal demodulation, and image reconstruction.

Complex Valued MR Signals

The key towards understanding the MR image generation process involves developing an
appreciation for the complex valued nature of the signal.

The combined nuclear spins of all the hydrogen protons within a voxel can be treated as a
3D magnetization vector which, in its equilibrium state, is aligned with the main magnetic
field, defined here as being z-directed. If this 3D vector is knocked out of this equilibrium
state (typically by the application of suitable RF energy) it precesses about its z-axis, at a
frequency yB,, where y is the gyromagnetic ratio and B, is the main magnetic field strength.

Magnetic induction, the process by which a signal is induced in an MR receive coil,
requires a (fairly rapidly) changing signal. Now the only component of the 3D vector
changing rapidly enough is that perpendicular to the z-axis - in other words that
component rotating in, what we denote as, the x-y plane. This is the component responsible
for the so-called free induction decay (FID) that is detected by the MR receiver.

MR, then, detects a 2D magnetization vector resulting from the projection of a 3D
magnetization vector onto the x-y plane. We can write this time varying 2D magnetization
vector as
By (t) = p(X cos(wot + 9) + Psin (wot + I));
where p is the magnitude of the projection onto the x-y plane, wy = ¥ B, the precession
frequency, X and ¥ are unit vectors in the x and y directions respectively, and 9 defines the
orientation of the vector in the x-y plane.

For convenience (mainly to simplify the notation) we replace our 2D vector with a
complex number, whereby the real and imaginary parts corresponds to the x and y directed
components, respectively. Hence we can also write
By () = p exp (i(wot + ).

The signal we detect at the receive coil depends on By, and the complex (valued) coil
sensitivity. Further, p depends on the tissue’s proton density, its T1 and T2 relaxation rates,
the complex transmit coil sensitivity, and the pulse sequence. For simplicity’s sake we will
assume that the coil sensitivities, tissue, and pulse sequence impacts, and phase att = 0, are
all included in a new complex term p. Hence we have
Byy (t) = p(t) exp(iwgt) = |p(t)] exp(ip(t)) exp (iwot).

Recovering the Complex MR Signal

Now the signal in the coil is necessarily real valued, or
s(t) = Re{Bxy} = |p(t)|cos (wot + @(t)).

To create an image we need to be able to recover the complex p(t); and the way this is
achieved is via complex signal demodulation. Basically this involves separately multiplying
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the signal by both a cosine and a sine term, and combining the two resultant signals as real
and imaginary parts of a synthesized complex signal.

Hence we start with
Sea(®) = [p(®)] cos(wot + (p(t)) (cos(wot) — isin(wot));
then after some algebra, and ignoring high frequency terms (those with 2wt), we obtain
sca(®) = 1p(@®)|(cos(p(D)) + isin(p(1)) = lp(D)] exp(ip(t)) = p(b).

Note that w is a fixed (reference) frequency; and the high frequency terms are typically
removed with low pass filters.

In phasor signal notation, p(t) is known as the complex amplitude of the signal By, (t). In
MRI p(t) is also often known as the rotating frame signal.

The MR receiver, then, is designed to provide us with this complex magnetization signal.
Manipulating the Complex Magnetization

One nice aspect of the complex notation is that rotations of a 2D vector can be performed
by multiplication with a complex exponential. Further, all gradient induced manipulations
of the magnetization, as used for spatial encoding, are simply 2D rotations in the x-y plane.

For frequency encoding, the rotation is time varying, and the receiver signal is given by
s(t) = p exp (iyGytx);
where G, is the strength of the gradient field, and x is the x-position of the voxel.

Note that the time variation on the p term is usually only due to relaxation, and can
typically be ignored without much error.

For phase encoding, each view is acquired with a different rotation. Hence in the presence
of phase encoding the signal is given by
s(t,n) = p exp (iyngy Tpy);
where gy, is the incremental step in the phase encoding gradient amplitude, T}, is the length
of the phase encoding pulse, y is the y-position of the voxel, and n is typically an integer
incrementing from -(N/2) to (N/2)-1.

Notice that phase encoding requires us to introduce a 2D data structure for our signal.
The Full Signal

The MR signal equation is linear. Hence the full signal is just the integral of that from each
phase and frequency encoded voxel over the 2D x-y plane (we’ll assume a slice selective
acquisition), and is given by
St,n) = [[ p(x,y) exp (iy(Gxtx + ngypr)) dxdy.

K-Space

The k-space representation is obtained by writing the full signal equation with a change of
variables. Define two spatial frequency coordinates {u, v} = {yG.t,yng,Tp}; then
Sk, v) = [[ p(x,y) exp(i(ux + vy)) dxdy.

The beauty of this expression is that it clearly describes the 2D Fourier Transform
relationship between the (2D) signal, Sy (u, v), and the spatially dependent magnetization,
p(x,y).

Image Reconstruction

The above Fourier relationship implies that the spatial magnetization distribution can be
recover by inverse Fourier transforming the (2D) signal. Or
p(x,y) = [[ S (u,v) exp (—i(ux + vy) )dudv;
which is a very well conditioned operation, and can typically be rapidly computed using the
Fast Fourier Transform algorithm.
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