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Over the past 3 decades, Magnetic Resonance Imaging (MRI) has become an established medical imaging 

modality due to its superior soft tissue contrast and lack of ionizing radiation.  Conventional diagnostic MRI 
scans are non-quantitative by nature, but have provided clinicians and radiologists with the ability to detect 
multiple disease pathologies including cancer 1-3, stroke 4-6, musculoskeletal defects 7, 8, and cardiovascular 
disease 9-11, among many others.  Recently, efforts have been made to establish quantitative MRI assessments as 
biomarkers for disease detection and progression.  These quantitative MRI assessments have included T1 and T2 
relaxation times 12-15, proton density 14, 15, multiple diffusion and perfusion parameters 16-22, as well as chemical 
exchange and magnetization transfer 23-28.  Despite these efforts, the majority of routine clinical MRI scanning 
remains qualitative. 

High field (≥ 4.7 T) preclinical MRI scanners have been developed to provide MRI measures of disease in 
rodent models.  In contrast to clinical MRI scanning, preclinical MRI research studies are almost entirely 
quantitative by nature and may require assessment of multiple imaging parameters during a single scanning 
session.  These quantitative preclinical MRI studies provide the opportunity to assess pathophysiologic changes 
associated with disease progression and therapeutic efficacy.  In addition, rigorous validation of these 
preclinical MRI assessments has the potential to inform future clinical quantitative imaging studies. Therefore, a 
significant effort is ongoing to develop robust and effective acquisition and reconstruction techniques that can 
be used routinely in clinical practice.   

Conventional quantification methods in MRI are mostly based on linear or nonlinear curve fitting to various 
MRI models 12, 29, 30.  The implementation of these established model-based methods, such as T1 and T2 
relaxation time estimation, are straightforward.  However, these conventional quantification methods are 
susceptible to multiple sources of errors including cardiac and respiratory motion artifacts 31-33, as well as 
heterogeneity in the main magnetic field (B0) and radiofrequency (RF) excitation profile (B1) 

34-36.  Importantly, 
the potential for these errors are significantly increased on high field preclinical MRI scanners where B1 and B0 
heterogeneities are increased; rodent heart rates can be as high as 500-600 beats / minute; and breathholds are 
not possible (Figure 1).  In addition, temporal errors can be observed in preclinical studies that require multiple 
imaging parameter estimates (ex. diffusion and perfusion) as extended periods of anesthesia can cause 
physiologic changes during sequential scans. Therefore, new MRI acquisition and reconstruction methods for 
preclinical imaging 
applications that are 
immune to these error 
sources and can 
simultaneously obtain 
estimates of multiple 
imaging parameters are 
needed.    

Over the last few 
years, a new category of 
quantification in MRI has 
emerged which uses 
dictionary-based methods 
to “match” acquired data 
rather than conventional 
parameter estimation techniques using error-minimization methods. One of these methods, compressed sensing, 
has been developed for both clinical and preclinical applications and has been shown to limit quantification 
errors and/or reduce the overall time to acquire quantitative data sets 37-41.  More recently, a new Magnetic 
Resonance Fingerprinting (MRF) methodology has been proposed 42, 43. MRF uses an entirely unique 
acquisition and quantification strategy that combines a priori acquisition parameter variation with a dictionary-
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Figure 1: Axial images of a mouse brain obtained with conventional spin echo, echo-
planar imaging (EPI), and True FISP imaging techniques.  While the long spin echo 
acquisitions provide good quality images, the more rapid imaging techniques exhibit 
enhanced distortion / ghosting (EPI) and banding (True FISP) artifacts on high field 
MRI scanners. 
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based matching algorithm to obtain quantitative assessments of multiple imaging parameters simultaneously.  
The MRF technique was initially developed for low-field (1.5T–3T), clinical MRI scanners and was used to 
simultaneously generate T1, T2, and M0 maps in both humans and rodent models.  Further, these initial reports 
have shown that the MRF technique is inherently resistant to errors from motion artifacts as motion is not 
“encoded” into the MRF dictionary.  Therefore, MRF may provide an ideal basis to generate multi-parametric 
assessments for preclinical imaging applications with limited impact of motion artifacts. 

In this study educational session, we are going to review the current state-of-the-art in quantitative, high 
field preclinical MR imaging. This educational session will primarily be a “how-to” session providing 
information on the challenges, solutions, and future opportunities for many investigators to obtain reliable 
quantitative assessments of diffusion, perfusion, chemical exchange, etc in animal models. We will begin by 
describing the technical challenges associated with obtaining high quality images on high field, preclinical MRI 
scanners including B0/B1 inhomogeneities and increased artifacts including susceptibility, banding eddy 
currents, motion artifacts, chemical shift artifacts, etc.  We will describe the advantages / disadvantages of 
conventional spin echo and gradient echo imaging readouts and then describe how other imaging readouts 
including GRASE and FISP as well as non-Cartesian trajectories can be used to provide improved imaging 
quality and/or reduced acquisition time as a basis for improved image quantification. Finally, we will describe 
some examples of compressed sensing and MR fingerprinting strategies that offer the opportunity to diminish 
the impact of respiratory and/or cardiac motion artifacts that are extremely problematic for preclinical MRI 
studies. 
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