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Highlights

What is fMRI preprocessing and why is it needed?

What are the basic steps and software implementations available for fMRI preprocessing?
Choosing preprocessing steps for different data sets and experimental paradigms.
Preprocessing optimization frameworks and recent developments.

Pre-Processing of fMRI Data

o TARGET AUDIENCE: The target audience is researchers and clinicians with limited to no
experience with fMRI imaging.

e OUTCOME/OBJECTIVES: As a result of this presentation the audience will know (i) what
fMRI pre-processing is, and why it is important, (ii) the basic pre-processing steps and
software packages available for implementing them, (iii) how to choose pre-processing steps
for different data sets and experimental paradigms, and (iv) about recent developments in
automated optimization of pre-processing of fMRI data.

e PURPOSE: For many experiments the BOLD fMRI signal reflecting the underlying neural
signals of interest is a small fraction of the total BOLD signal variability, which includes large
components due to motion, respiration and cardiac, and scanner effects, etc. The goal of
pre-processing steps in fMRI (i.e., the pre-processing pipeline) is to remove as much of the
unwanted BOLD or “noise” signal as possible to increase the signal-to-noise (SNR) of the
wanted signal component. This is typically done separately from the data analysis stage, but
recent work uses the results of the analysis stage to automatically adapt the choice of pre-
processing steps. Pre-processing of fMRI data is a large research area with 100s of papers
addressing the many complex issues and outcomes. Therefore, in this overview it will only
be possible to briefly touch on a selected subset of approaches and results.

e METHODS and RESULTS: Many sources of unwanted BOLD signal variability have been
identified over the last 20 years, and are described in detail in [1]. A core set of pre-
processing correction and denoising steps that are widely used by many researchers are
briefly summarised below.

Within-Subject Corrections

o Rigid Body Motion Correction (MC): Motion correction’s effects vary by dataset: it
reduces motion artifact, particularly in children and older groups, and clinical datasets [2,
3]. This probably the most ubiquitous and potentially important step in fMRI pre-
processing, but it may produce biased results with task coupled motion, and in cases of
large BOLD response and relatively small head movements [4].

o Censoring/Scrubbing of outlier brain volumes: Removing outlier timepoints that are
caused by abrupt head motion (i.e., scrubbing, [5, 6]), and replacing them by
interpolating from adjacent volumes (i.e., censoring, [7]). Scrubbing of scans creates
temporal discontinuities that preclude some types of analyses, e.g., spectral power.
There have been no major studies of censoring in fMRI task data, and thus its impact
and importance as a preprocessing step is largely unknown.
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o Physiological Correction using: This is an important pre-processing step that may often
be second-only to motion correction, and yet it has not been widely used in much of the
existing fMRI literature, because of the added experimental complexity of obtaining
external physiological measures. Recently this has been ameliorated by the availability
of software for multivariate, data—driven physiological estimates that may replace and
outperform the use of external measures.

= external physiological measures with RETROICOR: A parametric model using
external measures of respiration and heartbeat in which 2"-order Fourier series is
used to fit voxel time-courses, relative to the phase of cardiac and respiratory cycles
[8].

= multivariate data-driven models: These may be used in place of external
physiological measures to estimate physiological noise components, which are then
regressed out of the data. A number of such data-driven approaches have been
introduced, and shown to significantly improve on using external measures with
RETROICOR, e.g., PHYCAA+ [9], PESTICA [10], COMPCOR [11].

o Slice-timing correction: Correction for timing offsets between axial slices due to the slice
ordering of the EPI acquisition. This step is important for single-event and resting state
experimental designs, but it remains unclear if it provides a significant benefit to signal
detection in block designs [12].

o Spatial Smoothing: Typically preformed with a 3D Gaussian function, which tends to
improve SNR of features larger than the smoothing function size, and reduces SNR for
those that are smaller. Typical Gaussian full-width-half-maximum sizes used range from
4-8 mm. Adaptive smoothing approaches exist with available software [13].

o Temporal Detrending and Filtering: Removes low frequency noise with either a high-
pass filter (e.g., low-pass frequency cut-off of 0.01-0.005 Hz), or low-frequency temporal
trend components (e.g., a Legendre polynomials of order N (0 to 5). This provides non-
specific noise correction, including head motion, scanner drift, and physiological noise
[14]. The optimal detrending order has been shown to vary as a function of subject and
task design [15-17]. A low-pass filter with a frequency cut-off of 0.1 Hz is also widely
used for resting state data analysis [18].

o Motion Parameter Regression: The effects of this step vary by dataset: it is used to
control residual motion artifact [3, 4, 14], but it may also reduce experimental power,
particularly in cases of large BOLD response and low head motion [15, 19, 20].
Particularly for resting state analysis some researchers have advocated use of more
extensive regression models of residual motion effects including quadratic terms and 1°-
order derivatives of the estimated motion parameters [21]. The use of this step remains
controversial in the literature.

Additional within-subject pre-processing steps that may be beneficial

o Regression of white matter and CSF time courses: Some portion of physiological and
global BOLD variation may be removed by regressing out estimates of the white matter
and CSF temporal variability [22, 23]. Some authors suggest that this is superseded by
data-driven, physiological noise correction, but a comprehensive comparison has yet to
be performed.

o Non-neuronal tissue mask of vasculature, sinuses and ventricles: The PHYCAA+
algorithm ([9], www.nitrc.org/projects/phycaa_plus) may be used to estimate subject-
specific, vascular masks, to account for inter-subject differences in vasculature. If these
voxels are not excluded/down-weighted prior to analysis they can produce false-positive
activations, particularly for multivariate analysis models.

o Global signal regression: There are large sources of global signal variation in some
subjects for which the underlying cause remains unclear, but it may constitute
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physiological noise [24], neuronal response [25], or a mixture of both. The magnitude of

global signal expression appears to be subject-dependent [26, 27], indicating the

importance of adaptively estimating it across subjects. The various approaches listed

below have yet to be comprehensively compared.

= Using the spatial mean of scans’ BOLD signals: Can be quite effective but distorts
measurement of the spatial connectivity values [28, 29].

= Using PCA: Following a PCA of the fMRI data the PC#1 time-series tends to be
highly correlated with global signal effects [30], and residual motion artefacts [31].
Removing it minimizes the distortion of signal independent of global effects, unlike
simple regression of mean BOLD signal [28, 29].

=  Median angle correction as described in [26], and available in CPAC
(http://fcon _1000.projects.nitrc.org/indi/cpac).

Between-Subject Registration

o The problem of registering subject’s data sets across multiple subjects’ brains for group
analysis is a large research area in its own right, which cannot be adequately addressed
in this short tutorial. The basic issues and tradeoffs are described in [1]. Traditionally
registration has been based on aligning fMRI data sets through high resolution structural
MRIs, i.e., multiple subjects’ MRls are registered to a target brain (e.g.,
http://www.bic.mni.mcqill.ca/ServicesAtlases/ICBM152NLin2009) using some form of
non-linear warping algorithm, and the fMRI data sets are then registered via their
individual MRls to the target. For a comparison of the performance of available non-
linear registration software see [32]. Recent research trends have focused on generating
an implicit, group-specific target volume for minimizing registration errors [33], surface
based registration [34], and using more than one modality in the registration process [35,
36].

Selected List of fMRI Pre-processing Software:

http://afni.nimh.nih.gov/afni/

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

http://www.fil.ion.ucl.ac.uk/spm/

http://fcon_1000.projects.nitrc.org/indi/cpac
http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html
http://www.humanconnectome.org/documentation/HCP-pipelines/index.html
http://kendrickkay.net/GLMdenoise/

Large clearing house of fMRI software algorithms: http://www.nitrc.org/

O O O OO0 O0O0Oo

DISCUSSION: Recently Carp et al. [37] explicitly outlined the variability of fMRI results driven by
a range of choices in the preprocessing pipeline and analysis steps. As others have
demonstrated during the last 15 years (e.g., [15, 16, 38-41]), Carp establishes that small
changes within a preprocessing pipeline and analysis steps may lead to large effects on the
output, and suggests that this leads to a much higher risk of inflated false positives than has
been generally appreciated in the field. He suggests that problems stemming from the influence
of the wide range of pipeline choices being used in relatively low powered experiments “may be
mitigated by constraining the flexibility of analytic choices or by abstaining from selective
analysis reporting.”

| strongly agree with the need to eliminate the selective pipeline and analysis reporting
enabled by flexible, manual selection of pre-processing pipelines, and similar highly-biased
experimental approaches such as the double dipping [42, 43]. To start to address this problem |
strongly endorse the associated need for comprehensive and systematic reporting of
neuroimaging pipeline steps called for by Poldrack et al. [44] and Carp [45], coupled with
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software and data sharing efforts, which allow other investigators to test directly results
published in the literature [46].

However, constraining the flexibility of pipeline choices is only one possible approach.
Another approach, which has been taken recently by multiple groups, is to eliminate the biases
inherent in manual pre-processing step and component selection, and to automatically optimize
choices using predictive, cross-validation frameworks [16, 47-49]. These recent frameworks all
attempt to automatically estimate generalizable noise components using adaptively chosen
PCA/ICA noise components/subspaces to increase prediction levels across multiple, within-
subject and session scanning runs. As for previous studies using adaptive PCA- or ICA-based
component denoising (e.g., [38, 48, 50]) they all report large improvements in SNR and effect
size compared to conservative, fixed preprocessing pipelines. In addition, they all demonstrate
that optimal preprocessing requires adaptive modeling of the noise variability (i.e., adaptive
selection of pre-processing steps) on at least a subject-by-subject basis.

These results disagree with Carp’s proposal that for a given sample’s size it is
necessary to “constrain the flexibility of analytic choices” including pre-processing pipelines to
manage the challenge of overfitting fMRI data sets. Instead, this recent work strongly supports
the idea of flexibly adapting preprocessing pipeline choices in order to optimize signal-to-noise
extraction in fMRI, provided that the flexibility is managed in an automated, analytic framework
using cross-validated performance metrics.

CONCLUSION: We have learnt a great deal about choosing pre-processing steps and
algorithms during the last 20 years, but we are still a long way from understanding what
constitutes the best choices in any particularly experimental fMRI data set. This is particularly
true as a function of age and disease, and in a clinical setting where much research remains to
be done. | predict that the problem of optimizing pre-processing pipelines for a particular data
set will be best solved using pipeline management systems that automate pre-processing
choices within a resampling framework using resampled performance metrics, such as cross-
validated prediction.
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