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Highlights 
 

• Due to the non-linearity of the Bloch equations, the bandwidth of amplitude-modulated (AM) 
pulses varies with flip angle, and this should be considered in sequence design. 
 

• Frequency-modulated (FM) pulses can provide tolerance to B1-variation and some require 
less peak RF power than the equivalent bandwidth-matched AM pulse. 

 
• Powerful methods are available to design and optimize the performance of RF pulses; one 

of these known as the Shinnar-Le Roux (SLR) algorithm uses a hard pulse approximation, 
allowing the pulse to be described by two complex polynomials.  

 
• One- and multi-dimensional pulses can be designed using a k-space description in a low-

flip-angle approximation. 
 
• Pulse design methods such as VERSE and GOIA use gradient modulation to reduce RF 

energy deposition (SAR).  

 

Talk title:  RF Pulses Designs: from Basics to the State-of-the-Art 

 
• Target audience:  MRI scientists and pulse sequence developers 
 
• Outcomes/Objects:  Attendees will gain insight into the physics of RF pulses, the different 

types of RF pulses, and the tools and methods available to design and optimize their 
performance. 

 
• Purpose:  This presentation is meant to provide the general framework and formalisms for 

understanding and designing different types of RF pulses used in MRI sequences. 
 

• Methods: 

1) Visualizing the rotations produced by RF pulses: 

 A rotating coordinate frame (x’y’z’) provides the best platform from which to visualize the 

motion of a magnetization vector  M experiencing the torque from a magnetic field vector  B . In 

a reference frame rotating about  B0  at the angular velocity  ωRF of the RF field, the on-

resonance condition occurs when the RF frequency is equal to the Larmor frequency; that is, 

when ωRF = ω0 (Fig. 1a).  In the on-resonance case, the signal intensity following a pulse having 

duration Tp will be proportional to sinθ, where  

( )θ ω= ∫
p

10

T
t dt . 
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An important feature of any RF pulse is how uniformly it rotates  M despite an offset Δω that 

occurs, for example, in the presence of a field gradient used for slice selection. In the off-

resonance case, the axis of rotation is tilted out of the transverse plane (Fig. 1b).  

  

2) Types of RF pulses and their features: 

 The pulse shapes most often used in MRI are amplitude-modulated (AM). Common 

examples include pulses having shapes defined by sinc and gauss functions. These originated 

in the early days of MRI and were derived from a Fourier transform (linear) approximation to the 

Bloch equations. The frequency offset (Δω) range over which a pulse rotates the magnetization 

is known as the pulse bandwidth, bw. The bandwidth is inversely proportional to Tp and depends 

on the specific pulse pattern (e.g., sinc versus gauss) and the flip angle that is used. The latter 

is a consequence of the non-linearity of the Bloch equations. When developing multi-slice spin-

echo and other multi-pulse sequences, Tp of the 90° pulse (or 180° pulse) should be adjusted so 

that bw(90°)= bw(180°). Table 1 gives the factors that can be used to calculate bw for some 

common pulse shapes when using θ = 90° and 180°. These were obtained by using Bloch 

simulations. 

 

Figure 1: A rotating frame of reference showing the magnetic field components as angular 
velocity vectors,   ω1

î and Δω k̂ , for the case in which the RF pulse is applied (a) on 

resonance and (b) off resonance. 
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 With AM pulses, the carrier 

frequency (ωRF) remains constant 

during RF irradiation. With another 

class of pulses known as frequency-

modulated (FM) pulses, the pulse is 

both amplitude- and frequency-

modulated. This difference is 

illustrated in Fig 2. Common FM 

pulses are the chirp and hyperbolic 

secant (HS) pulses (1-5). A 

comparison of the slice profiles 

produced by sinc and HS pulses is 

shown in Fig 3. An adiabatic pulse is 

an FM pulse satisfying certain 

conditions described below. 

 With an FM pulse,  ωRF is time dependent, and therefore, the amplitude of  Δω k̂  and the 

amplitude and orientation of change during the pulse. Here we briefly describe the motions 

of the time-dependent magnetization and the field components in a rotating frame, in response 

to an FM pulse. At any moment during the pulse, the rate at which changes its 

orientation is given by the instantaneous angular velocity, dα(t)/dt, where α is the angle between 

 and the z’-axis. At the beginning of the pulse (t = 0), if Δω >>0, then the magnitude of 

  Δωk̂  is very large relative to that of   ω1
î , and thus, the initial orientation of  will be 

approximately collinear with z'. As  ωRF(t) increases during the pulse, Δω  decreases and 

rotates toward the transverse plane. 

When  ωRF(t) =  ω0, the orientation of  is 

parallel to   ω1
î , regardless of the magnitude of 

the   ω1
î .  In a classical adiabatic half-passage 

(AHP), the orientation of  is swept in this 

manner from z' to an axis in the transverse plane. 

In an adiabatic full-passage (AFP), the sweep of 

 ωRF(t) is continued past resonance so that the 

final orientation of  is parallel with -z' (i.e., at 

Figure 2: The difference between an AM 
only pulse (left) and a pulse that is both 
amplitude and frequency-modulated 
(right). Note that the frequency of the 
carrier under the sinc-shaped AM 
envelope varies in time in the FM case.  
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the end of the AFP, Δω <<0). During an adiabatic pulse, a magnetization vector (M) which is 

parallel to will tend to follow , provided that | | >> |dα(t)/dt|, for all t. This inequality 

is known as the "adiabatic condition". In simple terms, the adiabatic condition states that, at all 

times during the pulse, the rate at which  changes its orientation must be small relative to 

the rate at which a magnetization vector rotates about . Adiabatic pulses can be designed to 

tolerate extreme B1-inhomogeneity. As shown in Fig. 3, above a threshold RF amplitude the HS 

pulse operates adiabatically and thus continues to invert magnetization despite a further 

increase of RF amplitude.  

 A desirable feature of certain FM pulses is their ability to perform a similar rotation of M 

using lower RF amplitude than the equivalent (bandwidth-matched) AM pulse. On the other 

hand, for given settings of flip angle and bw, the RF energy deposited by different RF pulses 

(both AM and FM pulses) is the same. That is, for given flip angle and bw, SAR remains fixed 

when using different pulse shapes. On the surface, this may not seem to be true, and a more 

careful look is required to understand why. Table 2 lists pulse duration, RF amplitude and 

Figure 3:  Slice profiles produced by sinc and hyperbolic secant (HS1) pulses as a function 
of RF amplitude, B1

max. It can be seen that the slice profile of the sinc varies as a function of 
B1

max and displays undesirable side-lobes at the higher RF amplitudes. On the other hand, 
the slice produced by the HS1 pulse remains highly invariant as the RF amplitude changes.  
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relative SAR (Erel) of sinc and HS pulses when rotating longitudinal magnetization (Mz) in a slice 

of bw = 5 kHz (FWHM). It can be seen that Erel of the 180° HS pulse appears to be 35% larger 

than that of the sinc pulse, and this therefore appears to contradict the statement above. 

However, after viewing the slice profiles in Fig. 4, it can be appreciated why the HS appears to 

deposit more RF energy. That is, the sinc pulse rotates to a flip angle much smaller than the 

desired value over much of the bandwidth 

(i.e., away from the slice center, Mz>-

0.9M0), and only in this way is the sinc 

able to use lower SAR than the HS pulse. 

Note, Table 2 also shows that the duration 

of the HS pulse is >4-fold longer than the 

sinc pulse.  FM pulses generally require a 

longer Tp than the equivalent AM pulse, 

which in some cases is a disadvantage.  

 

3) Design and optimization methods:  

 So far, the only AM pulses discussed were those obtained from a linear approximation 

(i.e., FT) to the Bloch equations. However, several methods have been developed to obtain 

Table 2: 

Figure 4: Slice profiles (Mz) of the sinc and HS1 pulse for flip angles = 90º (left) and close to 
180º (right).
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solutions to the Bloch equations and these have shown great utility for generating both AM and 

FM pulses with improved performance specifications (e.g., see Refs (3,6-15)). The Shinnar-Le 

Roux (SLR) algorithm is probably the most popular method to generate pulses for slice selection 

(e.g., for excitation pulses that produce a flat baseband with sharp boundaries). A key to the 

SLR algorithm is the so-called hard-pulse approximation allowing the RF pulse to be mapped 

into two complex polynomials (called the forward SLR transform). During a pulse, M is rotating 

about the vector sum of   ω1
î  and   Δω k̂  due to the gradient field. The basic idea of the hard-

pulse approximation is that, if the angle is small, the rotation can be modeled by two sequential 

rotations. Given the two related polynomials, the inverse SLR transform is used to calculate the 

RF pulse that produces these polynomials. This inverse transform reduces RF pulse design to 

polynomial design. The Shinnar-Le Roux algorithm is fast and slice profiles can be calculated 

analytically. 

 Another major advance in RF pulse design came with the development of the k-space 

description of RF pulses that assumes a low flip angle approximation (16). This formalism led to 

not only new types of one-dimensional slice-selective pulses, but also multi-dimensional RF 

pulses.  

 Finally, valuable methods have been developed to reduce the RF energy deposited 

(SAR) during slice selection using gradient modulation.  Two such methods are known as 

VERSE (17) and GOIA (18).  
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