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The connectome 

The (human) brain describes a complex system of anatomically interlinked and functionally 
interacting elements. If we examine the brain at the micro cellular scale, neurons are connected to 
other neurons by means of dendrites, axons and synapses. If we study the brain at the meso- or 
macroscale -like we mostly do with Magnetic Resonance Imaging (MRI) -, neural columns and 
large-scale brain regions are anatomically interconnected by long-range axonal projections, 
facilitating neural communication and functional interaction. The ‘connectome’ describes a 
comprehensive map of the connections of an organism’s nervous system, and is believed to act as 
an anatomical basis for functional dynamics and functional interactions between brain regions to 
occur, and thus to be a requisite for brain function to emerge (Sporns, 2011; Sporns, et al., 2005). 
The field of ‘connectomics’ includes that part of neuroscience that is involved in the detailed 
mapping/reconstruction of the neural connections of the nervous systems of species, combined with 
the extensive studying of the structure of the derived brain wiring maps. In animals, Electron 
Microscopy (e.g. (Helmstaedter, et al., 2013) and tract-tracing approaches (e.g (Bota, et al., 2012; 
Markov, et al., 2013; Modha and Singh, 2010; Oh, et al., 2014; Scannell, et al., 1995; Van Essen, 
2012)) have enabled the reconstruction of detailed (partial) connectome maps of the nervous 
systems of several animal species. In humans -in which invasive approaches are highly limited-, 
advances in diffusion-weighted, functional MRI and EEG/MEG have led the way to the in vivo 

mapping of structural and functional brain connections, and therewith the first reconstructions of 
the macroscale human connectome (e.g. (Hagmann, et al.; Hagmann, et al., 2008; Iturria-Medina, et 
al., 2008; Salvador, et al., 2005a; van den Heuvel and Sporns, 2011; Van den Heuvel, et al., 2008)). 

Once a connectome map is reconstructed, the next frontier is the examination of its structure. What 
are the topological features that describe the complex organization of the system as a whole? The 
second part of the field of connectomics thus has the aim to elucidate key architectural features of 
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the brain’s connectome and study how these features may play a role in brain functioning (see for 
review (Bullmore and Sporns, 2012b; Sporns, 2011; Sporns, 2012; Stam and Reijneveld, 2007; van 
den Heuvel and Hulshoff Pol, 2010)). In the last decade, ‘graph theory’ (or ’network science’) has 
become a more and more popular framework to study the organizational structure of reconstructed 
brain networks (Bullmore and Sporns, 2009). The goal of this morning workshop is to provide an -
introductory- course on the topic of ‘How brain networks can be analyzed using graph theory’. 

 

Graph theory as a tool to extract key organizational features of brain networks 

One way to approach the brain as a system is by describing it as a ‘network’ or ‘graph’. Within this 
mathematical framework, the structure of a neural system is described as a collection of ‘nodes’ 
(which can be neurons, neural columns and/or large-scale brain regions) and ‘edges’ describing the 
connections interlinking these nodes (which can be axons, white matter bundles, functional 
interactions). [Figure 1 provides a schematic overview of the extraction of structural and functional 
brain networks from MRI data (Filippi, et al., 2013; van den Heuvel and Fornito, 2014)]. 

Once such a formal, mathematical description is established, graph theory can be used to describe 
the overall topological architecture of the network, allowing for the investigation of organizational 
features that would otherwise remain hidden when we would exclusively focus on information form 
single brain regions and/or single connections. One appealing aspect of the use of network science 
to describe and examine brain networks is that graph theory provides a vast array of data-driven 
metrics to describe the topology of networks (Bullmore and Sporns, 2009; van den Heuvel and 
Sporns, 2013). A number of such graph theoretical attributes have been shown to be particular 
useful in describing the organization of neural networks (Rubinov and Sporns, 2010). In what 
follows, a short introduction on a number of graph theoretical attributes commonly used in the field 
of MRI connectomics and their interpretation in context of the organization of neural systems is 
given [see Figure 2 for schematic illustration]. 

  ‘Clustering’ describes the tendency of nodes to locally link together, describing a high level 
of connectivity in the direct surrounding of a node. In brain networks, high levels of clustering (or 
its cousins ‘local efficiency’ and ‘transitivity’) and ‘modular organization’ -the tendency of groups 
of nodes to form densely connected subclusters or communities within the overall network- are 
thought to reflect functionally linked neuronal assembles, and thus to form an anatomical substrate 
for local information processing and functional segregation of brain systems (Sporns, 2013). 
Providing insight into the more global organization of a network, the ‘characteristic path length’ (or 
its inverse cousin ‘global efficiency’) reflects the ease of to which information can be transported 
across the network, summarizing the number of steps that -on average- have to be taken to travel 
from one node to another node in the network. Short path lengths (or high global network efficiency 
levels) in brain networks have been suggested to reflect high levels of communication efficiency 
between neural regions (Sporns, 2013). Networks with a high level of clustering (thus reflecting a 
high level of local organization), but still with a relative short average path length (thus reflecting 
high levels of global communication capacity) are referred to as ‘small-world networks’ (Watts and 
Strogatz, 1998), a class of networks known to exhibit properties of an efficient topological 
structure.  
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 Evaluating the above described graph theoretical metrics, network studies of the human, but 
also of the macaque, cat, mouse and rat brain, have shown evidence of brain connectomes to show 
an efficient small-world modular architecture, with high levels of clustering, short communication 
pathways, a pronounced functional and structural community structure (indicating the formation of 
locally segregated functional subdomains) (e.g. (Bassett and Bullmore, 2006; Hagmann, et al., 
2008; Iturria-Medina, et al., 2008; Salvador, et al., 2005b; Stam, 2004; Van den Heuvel, et al., 
2008)). Converging evidence suggests that these network attributes play a role in cognitive brain 
functioning (Bassett, et al., 2009; Li, et al., 2009; van den Heuvel, et al., 2009) and importantly, a 
growing number of patient-control studies tend to show that disruptions in graph theoretical 
attributes like clustering, path length and small-world and/or modular structure may play a role in 
the etiology and/or disease course of neurological and psychiatric disorders (see for review for 
example (Bassett and Bullmore, 2009; Crossley, et al., 2014; Filippi, et al., 2013; Fornito, et al., 
2012; Pievani, et al., 2014; Seeley, et al., 2009; Stam and van Straaten, 2012; van den Heuvel and 
Fornito, 2014; van den Heuvel and Kahn, 2012)).  

 In addition to metrics describing the global structure of a network, graph theory also provides 
the opportunity to describe and examine the role of individual nodes in the overall network structure 
(describing a ‘node-centric’ analysis of networks). In this respect, ‘degree’ and ‘centrality’ graph 
metrics provide insight into the role of a node in the overall architecture of the network, for 
example elucidating nodes that show high connectivity and a central role in for example the 
communication paths across the network. Network studies of the brain have shown evidence of a 
heavy-right-tailed distribution of nodal connectivity (e.g.(Cole, et al., 2009; Sporns, et al., 2007; 
Tomasi and Volkow, 2010; van den Heuvel, et al., 2010)), suggesting a potential ‘scale-free’-like 
(Barabasi and Bonabeau, 2003) type of organization (Bassett, et al., 2008; Eguiluz, et al., 2005; Van 
den Heuvel, et al., 2008), suggesting the formation of a small, but prominent present, group of 
highly connected ‘brain hubs’. Recent connectome studies have suggested that these putative brain 
hubs show a tendency of densely connecting to each other, reflecting a potential ‘rich club 
organization’ of neural systems, indicating that the ‘rich’ nodes of the network form a mutually 
connected collective or ‘club’ in the overall network (Bullmore and Sporns, 2012a; Harriger, et al., 
2012; Senden, et al., 2014; Shanahan, 2012; Towlson, et al., 2013; van den Heuvel, et al., 2012; van 
den Heuvel and Sporns, 2011; Zamora-Lopez, et al., 2009). Due to their high-degree and central 
embedding in the overall network, rich club regions and their connections have been hypothesized 
to form a backbone for neural communication and to thus form an anatomical substrate for neural 
integration between otherwise segregated functional systems (van den Heuvel and Sporns, 2013). 

 Shifting gear from a ‘node-perspective’ to a more ‘edge-perspective’ view of networks, graph 
theory also provides the opportunity to provide more insight into the role of the edges in the overall 
network architecture. Examples of edge-centric approaches include the evaluation of the 
contribution of edges to the communication capacity of networks (de Reus and van den Heuvel, 
2013), the examination of recurrent classes of communication paths in networks (called ‘path 
motifs’) (van den Heuvel, et al., 2012), and approaches that compute the formation of so-called 
‘edge communities’, being subsets of edges that play a similar role in the network (de Reus, et al., 
2014). Furthermore, new, potentially powerful approaches in the examination of graph theoretical 
aspects of neural networks and their behavior over time include ‘spectral graph theory’ 
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examinations (de Lange, et al., 2014), the examination of dynamical networks (Bassett, et al., 2013) 
and the use of dynamic simulation models (Deco and Kringelbach, 2014; Deco, et al., 2012). The 
use and understanding of these graph attributes with respect to brain networks and brain function is 
still in its infancy, but include highly promising new ways to get a better understanding of the 
structure and dynamics of brain networks. They underscore an ongoing expansion of the field of 
brain connectomics.  

 

In this workshop we will discuss the use and application of standard graph theoretical metrics (e.g. 
degree, clustering, path length, modules) in the field of brain networks, talk about different types of 
global networks organization (e.g. small-world, scale-free, rich club organization) and their 
interpretation and implication in context of neural networks and brain function. In addition, we will 
also briefly discuss theoretical metrics such as edge based graph metrics (e.g. edge-classes, rich 
clubs, (path) motifs) and their potential application in the examination of brain networks. 
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Figure 1. Figure schematically illustrates how a brain network and graph can be derived from MRI 
data. A. Brain regions can be defined on the basis of segmentation and parcellation of grey matter 
of a T1 anatomical image or by selecting regions from a predefined brain atlas (e.g. the AAL 
template, Brodmann regions etc.). The segmented regions form the ‘nodes’ of the to-be-
reconstructed graph. B. After the selection of the nodes, the ‘edges’ of the network are defined, 
reflecting the (level of) interaction between each of the brain regions. Examples of types of 
interaction include reconstructions of physical white matter pathways and their strength by means 
of Diffusion-Weighted MRI (DWI) or functional interactions by means of computation of the level 
of interaction (e.g. correlation) between resting-state fMRI/EEG/MEG time-series of brain regions. 
C. Region-to-region connectivity (i.e. the reconstructed DWI pathways or functional connectivity 
measurement) is computed for all region pairs (i.e. region 1 to region 2, region 1 to region 3, region 
2 to region 3 etcetera) and stored in a so-called connectivity matrix. The connectivity matrix is of 
size N x N, with N being the total set of brain regions depicting the level of connectivity between 
each pair of regions. Cell entries of the connectivity matrix can include information on the 
presence/absence of connections (i.e. 1 or 0), but may also hold information on the strength of a 
connection (i.e. number of reconstructed streamlines, fractional anisotropy of the tracts or level of 
functional coupling), in which case we refer to the matrix as a ‘weighted connectivity matrix’. D. 
The connectivity matrix describes a mathematical ‘graph’ with the columns and rows of the matrix 
describing the ‘nodes’ of the graph (i.e. the selected brain regions from A) and the cell-entries 
describing the (binary or weighted) interactions between the nodes referred to as graph ‘edges’. 
Figure is adapted from (Filippi, et al., 2013; van den Heuvel and Fornito, 2014).  
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Figure 2. Figure illustrates a number of graph metrics commonly used in MRI connectomics. A. A 
graph consists of a collection of ‘nodes’ and a collection of ‘edges’ describing the interactions 
between nodes. B. The graph metric degree expresses the number of graph edges per node. C. The 
(binary) clustering of a node reflects the level of connectivity between the direct neighbors of a 
node, computed as the ratio between the number of closed and possible triangles around a node. 
High levels of clustering are believed to reflect a high level of local organization and information 
segregation. The distance (or path length) between two nodes in the network describes the minimal 
number of edges that have to be passed when traveling from a node to another node in the network 
(blue arrows). In brain networks, relative short communication pathways are believed to reflect high 
levels of communication efficiency. A node with high level of connectivity and a central position in 
the network (for example hosting a large number of all shortest paths) is often referred to as a ‘hub’ 
(red node). D. A dense level of mutual connectivity (more than chance level) of connectivity 
between high degree hub nodes illustrates the formation of a ‘rich club’ in a network (red nodes and 
edges). E. Communities (blue, purple and pink) reflect groups of nodes that are relative densely 
connected to nodes within the same community, but relatively sparsely connected to the rest of the 
network. Figure is adapted from (van den Heuvel and Fornito, 2014). 

 
References 

Barabasi, A.L., Bonabeau, E. (2003) Scale-free networks. Scientific American, 288:60-9. 
Bassett, D.S., Bullmore, E. (2006) Small-world brain networks. Neuroscientist, 12:512-23. 
Bassett, D.S., Bullmore, E., Verchinski, B.A., Mattay, V.S., Weinberger, D.R., Meyer-Lindenberg, 

A. (2008) Hierarchical organization of human cortical networks in health and schizophrenia. 
J Neurosci, 28:9239-48. 

Bassett, D.S., Bullmore, E.T. (2009) Human brain networks in health and disease. Current opinion 
in neurology, 22:340-7. 

Proc. Intl. Soc. Mag. Reson. Med. 23 (2015)    



 

7 

Bassett, D.S., Bullmore, E.T., Meyer-Lindenberg, A., Apud, J.A., Weinberger, D.R., Coppola, R. 
(2009) Cognitive fitness of cost-efficient brain functional networks. Proc Natl Acad Sci U S 
A, 106:11747-52. 

Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., Grafton, S.T. (2013) 
Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci U S 
A, 108:7641-6. 

Bota, M., Dong, H.W., Swanson, L.W. (2012) Combining collation and annotation efforts toward 
completion of the rat and mouse connectomes in BAMS. Frontiers in neuroinformatics, 6:2. 

Bullmore, E., Sporns, O. (2009) Complex brain networks: graph theoretical analysis of structural 
and functional systems. Nat Rev Neurosci, 10:186-98. 

Bullmore, E., Sporns, O. (2012) The economy of brain network organization. Nature reviews, 
13:336-49. 

Cole, M.W., Pathak, S., Schneider, W. (2009) Identifying the brain's most globally connected 
regions. Neuroimage, 49:3132-48. 

Crossley, N.A., Mechelli, A., Scott, J., Carletti, F., Fox, P.T., McGuire, P., Bullmore, E.T. (2014) 
The hubs of the human connectome are generally implicated in the anatomy of brain 
disorders. Brain : a journal of neurology, 137:2382-95. 

de Lange, S.C., de Reus, M.A., van den Heuvel, M.P. (2014) The Laplacian spectrum of neural 
networks. Frontiers in computational neuroscience, 7:189. 

de Reus, M.A., Saenger, V.M., Kahn, R.S., van den Heuvel, M.P. (2014) An edge-centric 
perspective on the human connectome: link communities in the brain. Philosophical 
transactions of the Royal Society of London, 369(1653) 

de Reus, M.A., van den Heuvel, M.P. (2013) Rich club organization and intermodular 
communication in the cat cortex. J Neurosc. 33(32):12929-39 

Deco, G., Kringelbach, M.L. (2014) Great expectations: using whole-brain computational 
connectomics for understanding neuropsychiatric disorders. Neuron, 84:892-905. 

Deco, G., Senden, M., Jirsa, V. (2012) How anatomy shapes dynamics: a semi-analytical study of 
the brain at rest by a simple spin model. Frontiers in computational neuroscience, 6:68. 

Eguiluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V. (2005) Scale-free brain 
functional networks. Physical review letters, 94:018102. 

Filippi, M., van den Heuvel, M.P., Fornito, A., He, Y., Hulshoff Pol, H.E., Agosta, F., Comi, G., 
Rocca, M.A. (2013) Assessment of system dysfunction in the brain through MRI-based 
connectomics. Lancet neurology, 12:1189-99. 

Fornito, A., Zalesky, A., Pantelis, C., Bullmore, E.T. (2012) Schizophrenia, neuroimaging and 
connectomics. NeuroImage, 62:2296-314. 

Hagmann, P., Cammoun, L., Gigandet, X., Gerhard, S., Ellen Grant, P., Wedeen, V., Meuli, R., 
Thiran, J.P., Honey, C.J., Sporns, O. MR connectomics: Principles and challenges. Journal 
of neuroscience methods, 194(1):34-45. 

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O. (2008) 
Mapping the structural core of human cerebral cortex. PLoS biology, 6:e159. 

Harriger, L., van den Heuvel, M.P., Sporns, O. (2012) Rich club organization of macaque cerebral 
cortex and its role in network communication. PloS one, 7:e46497. 

Proc. Intl. Soc. Mag. Reson. Med. 23 (2015)    



 

8 

Helmstaedter, M., Briggman, K.L., Turaga, S.C., Jain, V., Seung, H.S., Denk, W. (2013) 
Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 
500:168-74. 

Iturria-Medina, Y., Sotero, R.C., Canales-Rodriguez, E.J., Aleman-Gomez, Y., Melie-Garcia, L. 
(2008) Studying the human brain anatomical network via diffusion-weighted MRI and 
Graph Theory. NeuroImage, 40:1064-76. 

Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., Jiang, T. (2009) Brain anatomical network and 
intelligence. PLoS computational biology, 5:e1000395. 

Markov, N.T., Ercsey-Ravasz, M., Lamy, C., Ribeiro Gomes, A.R., Magrou, L., Misery, P., Giroud, 
P., Barone, P., Dehay, C., Toroczkai, Z., Knoblauch, K., Van Essen, D.C., Kennedy, H. 
(2013) The role of long-range connections on the specificity of the macaque interareal 
cortical network. Proceedings of the National Academy of Sciences of the United States of 
America, 110:5187-92. 

Modha, D.S., Singh, R. (2010) Network architecture of the long-distance pathways in the macaque 
brain. Proceedings of the National Academy of Sciences of the United States of America, 
107:13485-90. 

Oh, S.W., Harris, J.A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., 
Henry, A.M., Mortrud, M.T., Ouellette, B., Nguyen, T.N., Sorensen, S.A., Slaughterbeck, 
C.R., Wakeman, W., Li, Y., Feng, D., Ho, A., Nicholas, E., Hirokawa, K.E., Bohn, P., 
Joines, K.M., Peng, H., Hawrylycz, M.J., Phillips, J.W., Hohmann, J.G., Wohnoutka, P., 
Gerfen, C.R., Koch, C., Bernard, A., Dang, C., Jones, A.R., Zeng, H. (2014) A mesoscale 
connectome of the mouse brain. Nature, 508:207-14. 

Pievani, M., Filippini, N., van den Heuvel, M.P., Cappa, S.F., Frisoni, G.B. (2014) Brain 
connectivity in neurodegenerative diseases--from phenotype to proteinopathy. Nature 
reviews. Neurology, 10:620-33. 

Rubinov, M., Sporns, O. (2010) Complex network measures of brain connectivity: uses and 
interpretations. NeuroImage, 52:1059-69. 

Salvador, R., Suckling, J., Coleman, M.R., Pickard, J.D., Menon, D., Bullmore, E. (2005a) 
Neurophysiological architecture of functional magnetic resonance images of human brain. 
Cereb Cortex, 15:1332-42. 

Salvador, R., Suckling, J., Schwarzbauer, C., Bullmore, E. (2005b) Undirected graphs of frequency-
dependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B Biol 
Sci, 360:937-46. 

Scannell, J.W., Blakemore, C., Young, M.P. (1995) Analysis of connectivity in the cat cerebral 
cortex. J Neurosci, 15:1463-83. 

Seeley, W.W., Crawford, R.K., Zhou, J., Miller, B.L., Greicius, M.D. (2009) Neurodegenerative 
diseases target large-scale human brain networks. Neuron, 62:42-52. 

Senden, M., Deco, G., de Reus, M.A., Goebel, R., van den Heuvel, M.P. (2014) Rich club 
organization supports a diverse set of functional network configurations. Neuroimage, 
96:174-82. 

Shanahan, M. (2012) The brain's connective core and its role in animal cognition. Philosophical 
transactions of the Royal Society of London, 367:2704-14. 

Sporns, O. (2011) Networks of the Brain  MIT Press, Cambridge. 
Sporns, O. (2012) Discovering the Human Connectome. MIT Press, Cambridge. 

Proc. Intl. Soc. Mag. Reson. Med. 23 (2015)    



 

9 

Sporns, O. (2013) Network attributes for segregation and integration in the human brain. Current 
opinion in neurobiology, 23:162-71. 

Sporns, O., Honey, C.J., Kotter, R. (2007) Identification and classification of hubs in brain 
networks. PLoS ONE, 2:e1049. 

Sporns, O., Tononi, G., Kotter, R. (2005) The human connectome: A structural description of the 
human brain. PLoS computational biology, 1:e42. 

Stam, C.J. (2004) Functional connectivity patterns of human magnetoencephalographic recordings: 
a 'small-world' network? Neurosci Lett, 355:25-8. 

Stam, C.J., Reijneveld, J.C. (2007) Graph theoretical analysis of complex networks in the brain. 
Nonlinear biomedical physics, 1:3. 

Stam, C.J., van Straaten, E.C. (2012) The organization of physiological brain networks. Clin 
Neurophysiol, 123:1067-87. 

Tomasi, D., Volkow, N.D. (2010) Functional connectivity density mapping. Proc Natl Acad Sci U S 
A, 107:9885-90. 

Towlson, E.K., Vertes, P.E., Ahnert, S.E., Schafer, W.R., Bullmore, E.T. (2013) The rich club of 
the C. elegans neuronal connectome. J Neurosci, 33:6380-7. 

van den Heuvel, M.P., Fornito, A. (2014) Brain networks in schizophrenia. Neuropsychology 
review, 24:32-48. 

van den Heuvel, M.P., Hulshoff Pol, H.E. (2010) Exploring the brain network: a review on resting-
state fMRI functional connectivity. Eur Neuropsychopharmacol, 20:519-34. 

van den Heuvel, M.P., Kahn, R.S. (2012) Abnormal brain wiring as a pathogenetic mechanism in 
schizophrenia. Biol Psychiatry, 70:1107-8. 

van den Heuvel, M.P., Kahn, R.S., Goni, J., Sporns, O. (2012) High-cost, high-capacity backbone 
for global brain communication. Proceedings of the National Academy of Sciences of the 
United States of America, 109:11372-7. 

van den Heuvel, M.P., Mandl, R.C., Stam, C.J., Kahn, R.S., Hulshoff Pol, H.E. (2010) Aberrant 
frontal and temporal complex network structure in schizophrenia: a graph theoretical 
analysis. J Neurosci, 30:15915-26. 

van den Heuvel, M.P., Sporns, O. (2011) Rich-club organization of the human connectome. J 
Neurosci, 31:15775-86. 

van den Heuvel, M.P., Sporns, O. (2013) Network hubs in the human brain. Trends in cognitive 
sciences, 17(12):683-96. 

Van den Heuvel, M.P., Stam, C.J., Boersma, M., Hulshoff Pol, H.E. (2008) Small-world and scale-
free organization of voxel based resting-state functional connectivity in the human brain. 
Neuroimage, 43:11. 

van den Heuvel, M.P., Stam, C.J., Kahn, R.S., Hulshoff Pol, H.E. (2009) Efficiency of functional 
brain networks and intellectual performance. J Neurosci, 29:7619-24. 

Van Essen, D.C. (2012) Cortical cartography and Caret software. NeuroImage, 62:757-64. 
Watts, D.J., Strogatz, S.H. (1998) Collective dynamics of 'small-world' networks. Nature, 393:440-

2. 
Zamora-Lopez, G., Zhou, C., Kurths, J. (2009) Graph analysis of cortical networks reveals complex 

anatomical communication substrate. Chaos (Woodbury, N.Y, 19:015117. 

Proc. Intl. Soc. Mag. Reson. Med. 23 (2015)    


