
Diffusion Analysis Using MRtrix 
Analyze This! Practicalities of fMRI & Diffusion Data Analysis 

J-Donald Tournier (jdtournier@gmail.com) 

Highlights 
 High-quality software to perform many types of diffusion analysis 

 Based primarily on spherical deconvolution  

 Designed with a particular focus on performance and usability 

 Can be installed on all major operating systems 

Target audience: Scientists and clinicians interested in using the MRtrix software package to perform state-

of-the-art tractography and other advanced diffusion MRI analyses. 

Purpose: To provide an overview of the types of analyses that can be performed within MRtrix (more 

specifically, MRtrix3 (1)), how these analyses can be performed, and outline the design principles behind 

the software. 

Introduction 

The field of diffusion MRI has expanded massively since its early days, with the introduction of the diffusion 

tensor (2,3) over 2 decades ago, to the more advanced higher-order models in use today (reviewed in 4). A 

number of software packages are now available, each implementing a subset of the vast number of 

techniques proposed to date. MRtrix (5,6), along with its more recent version MRtrix3 (1), is a collection of 

tools to perform analysis of diffusion MRI using or building on spherical deconvolution (7), particularly the 

non-negativity constrained version of the algorithm (8). Here, we focus on the newer MRtrix3 (1) release, 

since this version includes the most recent developments. 

 

Features 

MRtrix3 is written almost entirely in C++, using multi-threading throughout for maximum performance. It is 

primarily command-line driven, allowing for easy scripting and chaining of commands via Unix pipes. It 

provides native support throughout for DICOM, NIfTI, and variety of other formats (including some native 
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to MRtrix). It can be installed on MicroSoft Windows, Mac OS X, and most recent GNU/Linux distributions, 

and is available free of charge under an open-source license (the GNU General Public License, version 3).  

MRtrix3 also includes a modern viewer for image, FOD, and tractogram display. It is based on OpenGL 3.3 

and Qt, and includes tools to edit ROIs, overlay images, and to display FODs, streamlines, and vector fields. 

It also includes a full-featured ray-tracing volume renderer, as shown in Figure 1. 

Technologies included in MRtrix 

The concept of spherical convolution (7) is core to MRtrix. In this framework, the DW signal measured as a 

function of orientation is modelled as the convolution of a canonical single-fibre response function (i.e. the 

diffusion profile for a typical straight population of fibres), with the fibre orientation distribution (FOD; 

alternatively, the fibre orientation distribution function, fODF). The FOD can be used for a number of 

applications, including first and foremost the estimation of fibre orientations using spherical deconvolution 

(7,8), providing the information required for tractography (5,9) and related technologies (10,11), but also to 

refine the tractography results and imbue them with more quantitative properties (12), to drive non-linear 

image registration algorithms (13), to perform direction-specific voxel-based analyses (14), and to estimate 

microstructural features such as the fibre (or more generally neurite) density (14). These types of analysis 

are all implemented within the MRtrix3 (1) software package; the original MRtrix (6) package provides only 

a core subset of these functionalities.  

Constrained spherical deconvolution (CSD): spherical deconvolution is an ill-posed problem, prone to noise 

amplification (7). Non-negativity constrained spherical deconvolution (8) was proposed to address this 

issue, and has proved very successful even with relatively modest data (15,16). MRtrix3 provides a fast and 

robust implementation of CSD. 

Probabilistic and deterministic tractography: both MRtrix and MRtrix3 include algorithms for probabilistic 

tractography based on the FOD, which have been shown to perform well (9,17). In MRtrix3, the default 

algorithm is the 2nd-order integration over fibre orientation distributions (iFOD2) approach (18), designed to 

minimise biases inherent in first-order methods in curved regions. Tractography can be performed using 

regions of interest (e.g. for neurosurgery planning (9)), or over the whole brain, which opens up promising 

applications (see below).  

Anatomically-constrained tractography (ACT): it is well known that tractography is prone to false positives, 

particularly probabilistic approaches. The anatomically constrained tractography framework (11) is 

designed to identify biologically implausible streamlines and discard them from the output, and hence 

maximise the biological accuracy of the resulting streamlines. 

Spherical deconvolution informed filtering of tractograms (SIFT): it is now clear that streamlines-based 

tractography algorithms do not produce quantitative results directly: streamline counts are not 

representative of the actual white matter fibre count (19). SIFT addresses this by modifying an input whole-

brain tractogram such that the final streamline counts are in proportion to the FOD data, removing many of 

these biases and ensuring that the number of streamlines connecting different regions is proportional to 

the amount of white matter they represent. The streamline counts obtained after SIFT are therefore ideally 

suited to connectivity analyses, and the emerging field of connectomics. 

Track density imaging (TDI) / Track-weighted imaging (TWI): whole-brain tractograms can be used to 

produce striking high-resolution images of the brain (10), which can be used to observe anatomical details 

not visible using other techniques (20). This approach can also be used in combination with other types of 
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data to produces high-resolution images weighted by a combination of the streamlines and their properties 

as measured along their lengths (21), using a very general framework with interesting potential applications 

(22). 

Apparent fibre density (AFD): it can be shown that the FOD amplitude is directly related to the amount of 

white matter it correspond to. In other words, the FOD provides a direct (albeit relative) measure of 

apparent fibre density (a.k.a. neurite density). This forms the basis of a fixel-based analysis framework1, 

allowing the detection of group-wise differences or correlations in both space and orientation: differences 

can be ascribed to a specific fibre population within the regions identified as significant. A full-blown AFD 

analysis requires a number of non-trivial steps, including: non-linear registration of the FOD images to a 

group template, preferably using the FODs themselves to drive the registration (13), with the appropriate 

reorientation (23) and modulation (14) of the FODs; computation of fixel-wise statistics using connectivity-

based fixel enhancement (24) to boost statistical power; and permutation testing to assign significance 

(14). This approach has been applied in a number of populations with promising results (25–28). 

Conclusion  

MRtrix provides tools to allow many types of advanced diffusion MRI analysis, including robust 

tractography suitable for many types of connectivity analyses, and fixel-based group analyses. It is designed 

with a particular focus on performance and usability, and is being used successfully by researchers in both 

scientific and clinical settings.  
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