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Background: 4D flow MRI provides a non-invasive method for the qualitative and quantitative 
characterization of blood flow in heart and great vessels in 3D 1-6. Currently, ECG synchronized 
4D flow MRI (also termed 'flow sensitive 4D MRI', 'time-resolved 3D velocity mapping', or '4D 
velocity mapping') can be employed to detect and visualize global and local blood flow 
characteristics in entire targeted vascular regions. As a result, 4D flow MRI permits the 
assessment of three-directional blood flow with full volumetric coverage of cardiac chambers or 
cardio- or neurovascular regions of interest such as the thoracic aorta or the large cerebral arterial 
and venous system.  
 
4D Flow MRI: In 4D flow MRI, velocity is encoded along all three spatial dimensions 
throughout the cardiac cycle, thus providing a time-resolved 3D velocity field7-9. Data 
acquisition is synchronized with the cardiac cycle and data collection is distributed over multiple 
cardiac cycles using so called ‘'k-space segmentation’ techniques (only a fraction of the entire 
4D flow data is measured during each cardiac cycle, the data is successively collected over 
multiple RR-intervals). After completion of the 4D flow acquisition, four time-resolved (CINE) 
3D datasets are generated ('magnitude' data depicting anatomy and three flow datasets 
representing velocities ‘Vx, Vy, and Vz’, see figure 1A). For typical cardiovascular applications, 
scan times between 5 and 15 minutes can be achieved depending on heart rate, spatio-temporal 
resolution and anatomic coverage. For thoracic and abdominal applications, respiration control is 
thus needed to minimize breathing artifacts. The 4D flow raw data can include up to 5000-10000 
individual images. As a result, efficient pre-and post-processing strategies are needed to translate 
the acquired information on cardiovascular anatomy and blood flow into clinically useful 
information.  
 
Preprocessing and Corrections: There are multiple sources of phase offset errors in PC and 4D 
flow MRI that can degrade image quality and impair measurements by introducing inaccuracies 
in flow quantification. The most commonly encountered inaccuracies include phase offset errors 
due to eddy currents10, Maxwell terms11, and gradient field nonlinearity12. It is thus important to 
apply appropriate correction strategies to compensate for these potential sources of error before 
further processing of the data for 3D visualization or flow quantification. While correction for 
Maxwell terms and gradient field non-linearity are typically performed during image 
reconstruction (without the need for user interaction), eddy current correction cannot easily be 
automated and has to be integrated into the data analysis workflow.  
The most commonly employed strategy for eddy current correction is based on the methodology 
presented by Walker et al. in 199310. The approach is based on thresh-holding to identify regions 
with static tissue. These regions are then used to estimate eddy current induced linearly varying 
phase offset errors which are subsequently subtracted from the entire image. An alternative 
strategy requires the scanning of a large spherical (static) phantom directly after the 4D flow 
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scan with identical imaging parameters followed by the subtraction of the resulting phase 
difference images from the in-vivo 4D flow data. However, the long scan time and logistics 
needed to perform the additional 4D flow phantom scan make this option less desirable and 
image based correction is most often used. Unfortunately, no unified strategies, algorithms or 
software across different MR system vendors and 4D flow MRI applications exist. Nevertheless, 
studies have shown that 4D flow MRI can be reliably used for 3D visualization and flow 
quantification if appropriate correction strategies such as proposed by Walker et al10 are 
employed. 
 

 
 
Figure 1: Acquisition of 4D flow MRI data (A) and visualization and quantification of 3D hemodynamics (B) in the 
aorta of a healthy subject. The 4D flow data comprises information along all 3 spatial dimension, 3 velocity 
directions and time in the cardiac cycle. A 3D phase contrast angiogram (B, iso-surface rendering of the aorta) can 
be calculated from 4D flow MRI data to aid visualization and placement of analysis planes for retrospective flow 
quantification. Calculation of a systolic maximum intensity projection (MIP, right) provides a quick and easily 
analyzable overview over systolic velocity distribution and location of peak systolic velocity and Bernoulli pressure 
gradient. 
 
3D Phase Contrast MR Angiography (3D PC-MRA): A 3D anatomic representation of the 
underlying cardiovascular geometry can provide the anatomic orientation needed for 3D flow 
visualization and retrospective flow quantification. The 4D flow data itself can be used to 
approximate the vascular geometry by generating a 3D PC-MRA dataset without the need for an 
additional MRA acquisition. Based on PC-MRA applications in the early days of MRI13, several 
strategies for the 4D flow based calculation of 3D PC-MRA data have been presented. In general, 
all techniques are based on identifying regions with high blood flow velocities in the phase 
difference images and suppression of background signal by signal intensities in the anatomical 
magnitude images.13, 14. Although being a 'side product' of 4D flow MRI limited by spatial 
resolution, a 3D PC-MRA outline or transparent surface rendering of the vascular structures of 
interest (as shown in figure 1B) is greatly helpful for volumetric analysis and visualization.  
 
3D Blood Flow Visualization: For the qualitative evaluation of 4D flow MRI data, various 
options are available for 3D blood flow visualization15-22. Most approaches use 2D analysis 
planes which are positioned in the vessel of interest. These analysis planes are used to emit 3D 
streamlines or time-resolved 3D pathlines for flow pattern visualization. 3D streamlines 
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represent traces along the instantaneous 3D blood flow velocity vector field for an individual 
cardiac time-frame. For example, figure 1B illustrates the use of peak systolic 3D streamlines 
and systolic velocity maximum intensity projection (MIP) to visualize the spatial distribution of 
aortic blood flow velocities. Color-coding by velocity magnitude facilitates the visual 
identification of regions with high systolic flow velocities.  
For visualization of the temporal evolution of 3D blood flow over one or more heartbeats, time-
resolved pathlines are the visualization method of choice. Color-coding of these traces allows for 
the visualization of velocity changes or to trace the flow pattern to its origin. Time-resolved 
pathlines are best viewed and displayed dynamically (movie mode) to fully appreciate the 
dynamic information and changes in blood flow over the cardiac cycle.  
 
Retrospective Flow Quantification: Comprehensive visualization of blood flow in a 3D 
volume of interest enables a better understanding of the underlying pathologies, e.g. after a 
complex heart or aorta reconstruction surgery. The ability to perform additional quantitative 
analysis based on 4D flow MRI data has the potential to greatly impact diagnosis and patient 
management. In contrast to traditional 2D CINE PC-MRI, 4D flow MRI enables the 
retrospective quantification of hemodynamic parameters at any location within the 3D data 
volume at an offline workstation following acquisition23-25. For the quantification of standard 
flow parameters, 2D analysis planes can be flexibly positioned in any artery or vein. The 3D PC-
MRA data can be used to define the outline of the vessel lumen and subsequently calculate peak 
and mean velocities, total flow, net flow, or retrograde flow. An example for the use of 4D flow 
MRI and retrospective quantification of flow parameters in the ascending and descending aorta is 
shown in figure 1B.  
A number of studies comparing 2D CINE PC-MRI and 4D flow MRI have shown excellent 
agreement for flow quantification26, 27. Furthermore, good scan-rescan reproducibility and low 
inter- and intra-observer variability of 4D flow MRI based flow quantification has been 
demonstrated for intracranial, cervical, thoracic and abdominal applications26-29. It should be 
noted that a number of groups have presented strategies to assess more advanced hemodynamic 
parameters such as wall shear stress, pressure difference, pulse wave velocity, turbulent kinetic 
energy and others 23, 30-38.   
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