Quadruple interleaved ²³Na and ¹H acquisition at 7T

Paul W. de Bruin¹, Maarten J. Versluis², Peter Koken³, Sebastian A. Aussenhofer¹, Wouter den Hollander⁴, Ingrid Meulenbelt⁴, Peter Börnert^{1,3}, and Andrew G Webb¹ ¹Radiology, Leiden University Medical Center, Leiden, Netherlands, ²Philips Healthcare, Eindhoven, Netherlands, ³Philips Research Hamburg, Germany, ⁴Medical Statistics and Bioinformatics, Molecular Epidemiology, Leiden University Medical Center, Netherlands

PURPOSE: To design a time-efficient scanning protocol for a study of sodium concentration in knee cartilage in osteoarthritis (OA) patients. The study aims to scan both knees of healthy volunteers and patients within an hour. This work significantly extends the previously developed interleaving framework¹ to acquire four types of images simultaneously (two different ¹H and two different ²³Na images) for sodium quantification within 30 minutes.

Fig.1. Quad-interleaved acquisition diagram. Left to right: ²³Na Long T₂-suppressed, ¹H multi-echo, ²³Na, and ¹H Dixon.

INTRODUCTION: Sodium MRI has gained popularity in recent years with the availability of whole body 7T MRI scanners for imaging the brain², kidney³, and cartilage⁴. Higher field-strength increases signal-to-noise, which is beneficial for scanning the relatively low gamma²³Na-nucleus. Sodium scans are typically time-consuming: 10 minutes and more are common scan times. In our OA scanning protocol most of the time is dedicated to sodium scans, but ¹H scans are also required for anatomical overlay and B₀-shimming, in addition to T₂-mapping sequences. The hospital Ethics Review Board limits scanning time for volunteers in the 7T facility to 60 minutes. The goal is to use this time as efficiently as possible for a ²³Na-MRI study on knee cartilage.

e) 23 Na without T₂suppression prepulse Fig. 2. In-vivo knee images acquired using the quad-interleaved protocol. Acquisition time was 24 minutes

METHODS: An interleaving framework¹ has been used to efficiently interleave a total of four scans, taking advantage of large separation in resonance frequency and the differences in relaxation behavior between ²³Na and ¹H. The different sequence descriptions are stored on the data acquisition system in parallel tasks that can be switched on a microsecond basis. The T_1 of ²³Na is approximately 25ms, resulting in a non-saturating TR of ~75-150 ms for a 90° FA. Depending on the exact sequence parameters this results in 75 – 125 ms 'dead-time' that is available for ¹H acquisition. Thus, scan efficiency can be increased by interleaving several ¹H k-space lines into one ²³Na TR (see Fig. 1). This high-level approach enables full flexibility in sequence design for ²³Na and ¹H independently.

The feasibility of the implementation has been tested on a whole body 7T scanner (Philips, Best) and an in-house built ²³Na birdcage coil combined with 4 ¹H strip lines fed from a quadrature input with a two-way power splitter with additional 90° phase shifts. Four different scans were interleaved (see Fig. 1): (i) a 3-point Dixon ¹H scan: TE₁=3.2ms, Δ TE=0.33ms, TR=8.3ms, FA 10°, FOV 175×175×140 mm, spatial resolution 0.78×0.79×1.7mm³, (ii) ¹H multi-echo scan: TE=5,15,25,35,45,55,65ms, TR=75 ms, FA 35°, FOV 170×170×99 mm³, spatial resolution 0.97×0.97×2.1mm³, (iii) total sodium concentration scan: ²³Na 3D spiral gradient echo, FOV 220×220×153mm³, 3×3×3mm³ spatial resolution, (TR=100ms, TE=1ms, FA 90°, 16 spiral interleaves, readout acquisition time 10ms, 15 signal averages, (iv) 23 Na scan with long suppression pulse: identical spiral readout to the total sodium scan, with 21ms adiabatic pre-pulse with an inversion delay of 35ms. Total scanning time for these scans was 23m25s. If run successively the total imaging time would be 39m10s. The phantoms used to quantify total sodium concentration are six 15 ml tubes containing sodium concentrations of 75, 150, and 300 mM in water and in 2% agarose. Ten volunteers have been scanned. Validation is performed by comparing interleaved and separately scanned images.

RESULTS: Figure 2 shows typical in-vivo images that have been acquired using the interleaved acquisition protocol. In volunteers, there is no discernible difference between separate and interleaved ²³Na acquisitions. In the ¹H images very minor differences in signal intensities are present.

DISCUSSION: Combining ²³Na and ¹H in an interleaved way is an effective, simple, and safe method to reduce scanning time. The ¹H scans are acquired in the 'dead time' of the ²³Na sequence and are obtained for free. Therefore, these can be acquired at higher spatial resolution compared to situations in which extra time were needed for such a scan. In addition to morphology the interleaved approach could be used for real-time B₀ correction and/or real-time motion correction (where the motion correction information could be of higher spatial resolution than the image to be corrected).

CONCLUSION: The high time efficiency of interleaving ²³Na with ¹H results in practicable scanning times, which is essential for patient studies. The virtually simultaneous acquisition results in perfect image registration between the scans and allows for more advanced applications in future, such as dynamic B_0 correction and motion correction.

1.de Bruin et al. ISMRM #0034 (2014). 2.Fleysher et al. NMR Biomed (2012). 3 Haneder et al. Radiology 260 (2011). 4 Madelin et al. JMR 207 (2010).