Assessing tumor microenvironment in rat glioma model using hyperpolarized 13C MRSI with a sliding window

Jae Mo Park¹, Ralph E Hurd², Dirk Mayer³, Lawrence D Recht⁴, and Daniel M Spielman¹

¹Radiology, Stanford University, Stanford, CALIFORNIA, United States, ²Applied Sciences Laboratory, GE Healthcare, Menlo Park, California, United States, ³Diagnostic Radiology & Nuclear Medicine, University of Maryland, Baltimore, Baltimore, MD, United States, ⁴Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States

Target Audience Researchers who are interested in characteristics of hyperpolarized ¹³C-substrates in cancer.

Purpose In vivo characteristics of hyperpolarized ¹³C-substrates are often critical in the design of optimized pulse sequence as well as in the proper data analysis. By far, T_1 has received most attention since the observation window of hyperpolarized ¹³C MR signals are T_1 -limited. However, T_2 and T_2^* also provide useful to understand tissue characteristics and create unique image contrasts^[1-4], providing information for alternative MR acquisition strategies^[2,3,5]. In this study, we propose a method that measures *in vivo* T_2^* using a **sliding window spiral chemical shift imaging** and calculate (1) *in vivo* T_2^* maps of hyperpolarized ¹³C-substrates and (2) **B**₀ maps from glioma-implanted rat.

Methods Approximately 10⁶ glioma cells are implanted into the right striatum of male Wistar rats ~10 days prior to the ¹³C imaging (N=5). A spiral chemical shift imaging (spCSI) pulse sequence^[6] is used to acquire single time-point metabolite maps of rat brain (four spatial interleaves, spectral width = 932.8 Hz, #echoes = 96, field of view = $43.5 \times 43.5 \text{ mm}^2$, nominal spatial resolution = $2.7 \times 2.7 \text{ mm}^2$, slice thickness = 6-8 mm, acquisition time = 0.5 s) following an *i.v.*

injection of 125-mM hyperpolarized $[1^{-13}C]$ pyruvate (injection-to-scan = 25 s, polarized using HyperSense DNP). B₀ field inhomogeneity over the brain is minimized adjusting linear shim currents with ¹H PRESS sequence. Custom-made birdcage RF coil (¹H-¹³C dual-tuned) and high-performance insert gradient coil (G_{max} = 500 mT/m, Slew rate_{max} = 1,865 mT/m/ms) are used in a 3T GE Signa clinical MR scanner. To assess T₂* of individual ¹³C-labeled metabolite, a sliding spectral window (window size = 24 echoes) with varying echo times ($\Delta TE = 1.07$ ms) is applied to the acquired CSI data (**Fig.1**). T₂* maps of [1-¹³C]pyruvate and [1-¹³C]lactate are calculated by fitting the temporal decay of each metabolite to an exponential function voxel-wise. For fitting, metabolite maps up to ~35 ms are used to maintain A pyruvate 10

to ~35 ms are used to maintain A pyruvate sufficient SNR.

<u>Results and Discussion</u> Longer [1-¹³C]lactate T_2^* 's (41.0 ± 3.85 ms) were measured from glioma as compared to normal-appearing brain in the contralateral side (31.6 ± 5.3 ms, P = 0.08, **Figs.2-3**). T_2^* of [1-¹³C]pyruvate was also longer in glioma (58.9 ± 12.9 ms) than in normal-appearing brain (37.2 ± 6.8 ms, P = 0.01). The T_2^* map of ¹³C-

also longer in glioma $(58.9 \pm 12.9 \text{ ms})$ than in normal-appearing brain $(37.2 \pm 6.8 \text{ ms}, P = 0.01)$. The T₂* map of ¹³Cbicarbonate was not reliably measured due to the low SNR. Although T₂* can be affected by other factors such as field inhomogeneity

and flow, the longer lactate T_2^* in tumor than in normal brain is consistent with longer lactate $T_2^{[1,2]}$ in tumor. Off-resonance effects were detected in the tumor regions despite shimming over the entire brain ($|B_{0,Tumor} B_{0,NormalBrain}| = 0.255 \pm 0.034$ ppm, P < 0.005, **Fig.3D**). This observation is consistent with the magnetic susceptibility changes in tumor due to paramagnetic blood deposition and diamagnetic calcification around the tumor^[7-9]. Considering that the off-resonance effect shortens T_2^* , the contrasts between glioma and normal-appearing brain in T_2^* maps imply the significant contribution of T_2 differences. A non-exponential attenuation factor detected in lactate is probably due to the strong ${}^{13}C^{-1}H$ spin-spin coupling ($J_{CH} \approx 25 \text{ ms}$)^[1,4] (**Fig.2C,D**).

<u>Conclusion</u> The proposed method provides the opportunity to assess complex transverse relaxation mechanism of hyperpolarized ¹³C-substrates by observing multi-exponential decay patterns of the signal (as compared to the conventional spectral line-width measurement) as well as B₀ off-resonance. The study detected longer T₂* in brain tumor than in normal appearing brain, reflecting T₂ rather than field inhomogeneity. Therefore, the measured T₂* might serve as an indirect measure of relative T₂ of tumor and normal tissue.

<u>References</u> [1] Yen, YF et al (2010). *NMR Biomed*, 23(4): 414–423. [2] Yen, YF et al (2012). ppm) shifted in the tumor ROI. *ISMRM*, #4295. [3] Kohler, SJ et al (2007). *Magn Reson Med*, 58:65-69, [4] Chen AP et al (2009). *J Magn Reson*, 197:100-106. [5] Park, JM et al (2013). *ISMRM*, #3944. [6] Park, JM et al (2013). *Neuro-Oncology*, *15*(4): 433–441. [7] Yamada N et al (1996). *Radiology*, 198:171-178. [8] Schafer, A et al (2009). *Neuroimage*, 48: 126-137. [9] Deistung, A et al (2013). *PLoS One*, 8(3):e57924. <u>Acknowledgements</u> NIH: EB009070, AA005965, AA0018681, AA13521-INIA, P41 EB015891, DOD: PC100427, Lucas Foundation, Nadia's gift, and GE Healthcare