In vivo T₂ mapping of hyperpolarized [1-¹³C] pyruvate using an indirect method

Eunhae Joe¹, Joonsung Lee², Hansol Lee¹, Seungwook Yang¹, Young-suk Choi³, Eunkyung Wang³, Ho-Taek Song³, and Dong-Hyun Kim¹ ¹School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea, ²Severance Biomedical Science Institute, Yonsei University, Seoul, Korea, ³Department of Radiology, Yonsei University College of Medicine, Seoul, Korea

Target Audience Scientists and engineers interested in hyperpolarized ¹³C and T₂ relaxation time of ¹³C metabolites.

Introduction T_2 relaxation time is an important consideration in metabolic imaging. However, *in vivo* T_2 relaxation time of ¹³C metabolites in hyperpolarized ¹³C study is still not well investigated. Recently, apparent *in vivo* T_2 relaxation times of hyperpolarized [1-¹³C] pyruvate and its downstream metabolites were reported in several studies, which were measured from whole slice or single voxel using a spin-echo based methods [1, 2, 3]. In this work, we propose a T_2 estimation method for hyperpolarized ¹³C metabolites which utilizes the T_2' information of water proton and T_2^* of the ¹³C metabolites from a conventional chemical shift image (CSI).

<u>Methods</u> Theory - Relationship between T_2' of ¹H and T_2' of ¹³C: When the B_0 field change inside a voxel volume can be modeled as being linear, the external decay rate due to the field contribution $R_2' (= R_2^* - R_2)$ can be approximated as $\gamma \Delta B$ where γ is the nuclear gyromagnetic ratio and ΔB is the average B0 inhomogeneity across the voxel [4, 5]. Therefore R_2' of ¹H and ¹³C can be written as $R_2'_H = \gamma_H \Delta B$ and $R_2'_C = \gamma_C \Delta B$ respectively if following two conditions are satisfied: (i) water proton and ¹³C spins of a specific metabolite coexist with very similar distribution and (ii) field inhomogeneity in each voxel can be assumed to change linearly with an average field inhomogeneity ΔB . In this case, $R_2'_C$ can be indirectly estimated by $R_2'_C = (\gamma_C/\gamma_H) \cdot R_2'_H$ if $R_2^*_H$ and R_{2H} are measured a prior (Fig. 1).

Figure 1 Schematic diagram of 13 C R_2 map estimation method. Red and blue boxes indicate measured and derived results, respectively.

Experiments: Using this indirect estimation scheme, experiments were performed from a female Sprague-Dawley

(SD) rat with 1×10^4 C6 glioma cell implanted in the brain. *In vivo* experiments were performed on a 9.4T Bruker BioSpec (Bruker BioSpin, Germany) equipped with ¹H-¹³C dual-tune coil. Local shim for ROI in brain parenchyma was performed before imaging experiments. A T₂ map of water proton was acquired using multi-echo spin-echo (MESE) sequence over 4mm slice including brain tumor with 30mm*30mm FOV and matrix size of 24*24. To measure T₂^{*} maps of ¹H and hyperpolarized ¹³C, pulse-and-acquire CSI of ¹H and ¹³C were sequentially acquired with the same FOV and resolution as MESE. For hyperpolarized ¹³C experiments, [1-¹³C] pyruvic acid doped with 15mM Trityl radical and 1.5M Dotarem was polarized and dissolved using HyperSense DNP polarizer (Oxford Instruments, UK). The rat was injected with a 2.5ml of 75mM [1-¹³C] pyruvate bolus through a tail vein catheter. All procedures were approved by the Animal Care and Use Committees.

Data Processing: To obtain T_2 or T_2^* relaxation time constant (TC) from the acquired data, least-square nonlinear fitting was performed using monoexponential decay function with DC bias: S=C·e^{-t/TC}+A. T_2 and T_2^* maps of water proton were fitted using 16 echoes from MESE image and spatially encoded FID signal from CSI acquisition, respectively. For T_2^* mapping of $[1-^{13}C]$ pyruvate, inverse Fourier transformed signal of extracted pyruvate peak from ^{13}C CSI was used for fitting. ^{13}C CSI data was apodized in time domain by multiplying a decaying exponential function with time constant of 50ms and the spectra of pyruvate were extracted by Gaussian window with full width at half maximum of 240Hz. The fitted T_2^* values were corrected with the apodization taken into account. By taking reciprocal of these TC maps, $^{14}HR_2$ and R_2^* maps and $^{13}CR_2^*$ map were obtained. $^{14}HR_2'$

map was calculated by subtracting ¹H R₂ map from ¹H R₂^{*} map and finally ¹³C R₂ map was obtained by R_{2C} = R₂^{*} (γ_C/γ_H)·R₂'_H (Fig. 1).

<u>Results</u> The *in vivo* experiment results are shown in Fig. 2. The T_2 map of $[1-^{13}C]$ pyruvate (Fig. 2 (e)) shows localized longer T_2 values on tumor region were observed and its mean value was 228ms. Mean T_2 value of other normal region in ROI was 64ms. These values are close to the range of the short T_2 component (100~250ms) previously reported in the whole-slice studies with multicomponent T_2 analysis [2, 3].

Discussion and Conclusion In vivo T_2 map of $[1-^{13}C]$ pyruvate were estimated indirectly using the relationship of T_2' of two different nuclei. This method does not use any 90° or 180° pulse allowing conservation of the hyperpolarized magnetization. Therefore it can estimate localized T_2 values from multiple voxels and can potentially be used with time resolved fast CSI sequences to gather additional information such as conversion rates. To verify the accuracy of the estimated T_2 value, additional ^{13}C phantom experiments should be performed. Also, the ability to obtain T_2 maps from downstream metabolites should be further investigated.

<u>References</u> [1] Yen *et al.* NMR Biomed 23: 414-423, 2010. [2] Kettunen *et al.* MRM 63: 872-880, 2010. [3] Yen *et al.* In Proceedings of the 16th ISMRM,

Figure 2 (a) T_2^* map, (b) T_2 map and (c) calculated T_2' map of water proton. (d) T_2^* map and (e) estimated T_2 map of [1-¹³C] pyruvate. (f) T_2 weighted scout image (the red arrow indicates tumor).

p1747, 2008. [4] Yablonskiy et al. MRM 32: 749-763, 1994. [5] Haacke et al, Magnetic resonance imaging, New York: Wiley-Liss; 602-604, 1999.