Motion Correction of Free Breathing Quantitative Myocardial T2 Mapping: Impact on Reproducibility and Spatial Variability

Sébastien Roujol¹, Tamer A. Basha¹, Sebastian Weingärtner¹, Mehmet Akcakaya¹, Sophie Berg¹, Warren Manning^{1,2}, and Reza Nezafat¹ ¹Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States, ²Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States

Target Audience

Scientists and clinicians who are interested in myocardial tissue characterization.

Purpose/Introduction

Quantitative myocardial T_2 mapping is a promising technique for the detection of inflammation and edema¹. Conventional sequences generally use a breath-hold electrocardiogram (ECG)-triggered T₂-prepared (T₂prep) steady-state free precession (SSFP) acquisition¹. Due to limitations of breath-hold duration, these sequences are typically restricted to the acquisition of four T_2 -weighted images. Free breathing myocardial T_2 mapping sequences remove this time constraint and enable the acquisition of more samples along the T_2 decay curve, which may result in improved precision and reproducibility of T_2 estimates. However, this approach requires more advanced respiratory motion correction techniques². We recently developed a technique for Adaptive Registration of varying Contrast-weighted images for improved TIssue Characterization (ARCTIC) which we have evaluated for myocardial T₁ mapping³. In the current study, we sought to investigate the performance of ARCTIC for free breathing T₂ mapping and its impact on in-vivo reproducibility and spatial variability of myocardial T₂ estimates.

Materials and Methods

T2 mapping sequence: A free breathing respiratory gated ECGtriggered T₂prep SSFP acquisition was used with different T₂prep echo times (TE_{T2P})⁴. A 6 second rest cycle was inserted between the acquisitions of two successive T₂-weighted images to ensure full re-growth of longitudinal magnetization. Image acquisition immediately after a saturation pulse was used to simulate an infinitely long T₂prep echo time (TE_{T2P} = ∞). No T₂prep or imaging pulses were applied if the navigator signal was outside the gating window.

In-plane motion correction: The ARCTIC approach was used to compensate for in-plane motion between T2-weighted images. In this approach, all images are registered individually to a common reference image, chosen as the first image of the series (TE_{T2P} = 0). Affine motion descriptors are first estimated over a region of interest surrounding the heart. This global transformation is then used as initialization of a local non-rigid motion estimation step which simultaneous estimates motion field and intensity variations on a per-pixel basis with an additional regularization term based on automatic feature tracking. A GPU implementation of ARCTIC was used to accelerate the process.

Figure 1. Uncorrected (a) and ARCTIC motion corrected (b) T_2 -weighted images and T_2 maps. The ARCTIC technique improves the alignment of T_2 -weighted images and the T_2 map quality.

Experimental evaluation: All data were acquired on a 1.5 T Phillips scanner. Seven healthy adult subjects (30 \pm 17 years, 3 male) were imaged 5 times using the described T₂ mapping sequence (1 slice, field of view = 240×240 mm², in-plane resolution = 2.5×2.5 mm², slice thickness = 8 mm, TR/TE = 2.7 ms/1.35 ms, flip angle = 85° , 10 linear ramp-up pulses, SENSE rate = 2, acquisition window = 138 ms, phase encoding lines = 51, linear k-space ordering, 20 T₂prep echo times $(0, 25, 30, 35, ..., 95, 100, \infty, \infty, \infty)$. T₂ maps were reconstructed using a 3-point fit model⁴.

Data Analysis: In-vivo spatial variability and reproducibility of T2 mapping were measured in uncorrected and motion corrected T₂ maps using a 6 myocardial-segment based analysis. Spatial variability was defined as the average (over the 5 scans) of the standard deviation of T_2 estimates over a given segment. Reproducibility was defined as the standard deviation (over the 5 scans) of the spatial average T₂ values in one given segment. To investigate the motion influence in T₂ mapping sequences using a conventional number of T₂prep echo times, this analysis was performed using all 20 T₂prep echo times (20TEs) and using only a subset of the T₂-weighted images (4 T₂prep echo times (4TEs) of 0, 25, 50, ∞). Statistical significant differences between continuous variables were assessed by means of Student's t-Tests.

Results

Figure 1 shows an example of uncorrected and motion corrected data where The use of ARCTIC substantially improved the alignment of all images and resulted in improved T2 map quality. Reduced spatial variability was observed over all subjects and myocardial segments in T₂ maps reconstructed from 4 T₂prep echo times (13.7±4.3 vs. 11.1±3.6 ms, p<0.001) and 20 T₂prep echo times (10.6±5.3 vs. 7.9±1.8 ms, p=0.001) (Figure 2a). Improved reproducibility was observed over all subjects and myocardial segments in T2 maps reconstructed from 4 T2prep echo times (5.9±3.1 vs. 5.0±2.3 ms, p=0.011) and 20 T₂prep echo times (4.3±3.9 vs. 2.4±1.0 ms, p=0.002) (Figure 2b). T₂ maps reconstructed with 20 T₂prep echo times had higher reproducibility and lower spatial variability than motion corrected T₂ maps with 4 T₂prep echo times (p<0.001).

Conclusions

The ARCTIC technique improves the reproducibility and spatial variability of in-vivo free breathing myocardial T₂ mapping.

Acknowledgements

Grant support from NIH R01EB008743-01A2 and Samsung Electronics. References [1] McNamara, Circulation, 1985 [2] Giri, MRM, 2012

[3] Roujol, MRM, 2014

[4] Akçakaya, MRM, 2014

Figure 2. In-vivo spatial variability (a) and reproducibility (b) of T_2 mapping. ARCTIC motion correction improved both spatial variability and reproducibility of T_2 estimates.