Ungated, Free-breathing Arrhythmia-Insensitive-Rapid (AIR) Cardiac T₁ mapping with Motion Corrected Registration

Kyungpyo Hong^{1,2}, Ganesh Adluru¹, Edward VR. DiBella¹, and Daniel Kim¹

¹UCAIR, Department of Radiology, University of Utah, Salt Lake City, Utah, United States, ²Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States

Introduction: Most cardiac T1 mapping pulse sequences are conducted with ECG-gating and breath-holding to acquire multiple T1-weighted images for calculation of a pixel-by-pixel T1 map [1-3]. While this approach works well in patients with sinus rhythm and good breath-holding, it leads to corrupted T1 maps in patients with arrhythmia and/or poor breath-holding. One approach to address this problem is to perform motion-correcting registration during post-processing. One such software is Advanced Normalization Tools (ANTs)[4], which is based on diffeomorphic deformation, having the advantages of open source implementations (http://stnava.github.io/ANTs) and adaptable for cardiac MR images [5]. In this work, we sought to evaluate the performance of ungated, free-breathing arrhythmia-insensitive-rapid (AIR) cardiac T1 mapping [3] with ANTs registration as compared to ECG-gated breath-hold AIR as the reference.

Methods: (*Human Experiment*) We imaged 11 patients with atrial fibrillation (mean age = 60.4 ± 15.1 yrs) before and after administration of contrast agent (Gd-BOPTA, 0.15 mmol/kg) on a 3T MRI system (Verio, Siemens). For each subject, we performed ECG-gated breath-hold AIR (control) and ungated, free-breathing AIR acquisitions in a mid-ventricular short-axis plane. The pulse sequence order was randomized to minimize potential bias. We note that ECG-gated breath-hold AIR acquires one proton density image and one T1-weighted image in scan time of 2-3 heart beats. Ungated, free-breathing AIR acquires one proton density and 9 T1-weighted images in scan time of 8.3 s. Both AIR protocols used: FOV = 360 mm x 270 mm, slice thickness = 8 mm, acquisition matrix = 192×144 (PE), TE = 1.1 ms, TR = 2.7 ms, receiver bandwidth = 930 Hz/pixel, centric-pair k-space ordering [6], temporal resolution = 217 ms, saturation-recovery time delay (TD) = 600 ms, flip angle = 55° , acceleration factor (GRAPPA) = $1.8 \cdot (Image Analysis)$ Pixel-by-

pixel T1 maps were generated as previously described [3]. For ungated, free-breathing AIR, we applied ANTs to generate all nine T1 maps. After visual inspection, we used the best registration results to compare with ECG-gated breath-hold AIR results. Contours of myocardium and left ventricular blood pool were manually drawn to average T1 values. (*Statistical Analysis*) We calculated the mean T1 values over subjects for each of four tissue types (i.e., native myocardium, native blood, post-contrast myocardium, and post-contrast blood) and compared the mean T1 values between ECG-gated breath-hold and ungated free-breathing AIR using paired t-test (p < 0.05 considered significant).

Results: Figure 1 shows native and post-contrast cardiac T1 maps of a patient acquired by ECG-gated breath-holding and ungated, free-breathing, as well as motion corrected T1 maps with ANTs. While the mean T1 values were significantly different between ECG-gated breath-hold and ungated, free-breathing AIR acquisitions (p < 0.05), the percent difference between them was less than 5% for all four tissue types, suggesting clinically negligible differences (Table 1).

Conclusions: This study demonstrates the feasibility of diffeomorphic deformation to correct registration errors in the context of ungated free-breathing AIR cardiac T1 mapping. A future study is warranted to evaluate fully the clinical utility of ungated, free-breathing AIR cardiac T1 mapping with motion correction.

contrast agent over 11 patients. I1 values represent mean ± standard deviation.					
Tissue type		ECG-gated breath-hold T1 (ms)	Registered T1 (ms)	Percent difference (%)	<i>p</i> -value
Native	Myocardium	1464 ± 58	1501 ± 56	2.6	0.001
	Blood	2036 ± 161	1966 ±174	-3.4	0.02
Post- contrast	Myocardium	694 ± 46	711 ± 63	2.3	0.02
	Blood	393 ± 62	407 ± 74	3.1	0.03

References: [1] Messroghli DR et al., *MRM* 2004;52:141-146. [2] Chow K et al., *MRM* 2014;71:2082-2095. [3] Fitts M et al., *MRM* 2013;70:1274-82. [4] Avants BB et al., *Med Image Anal.* 2008;12(1):26–41. [5] Adluru G et al., Proc. SPIE8858, 2013;doi:10.1117/12.2024046. [6] Bieri O et al., *MRM* 2005;54:129–137. **Funding:** NIH (HL116895-01A1), American Heart Association (14GRNT18350028).