
References: [1]. N. M. Wilke, et.al, JMRI, vol. 10, 1999; [2]. J. Milles, et.al, IEEE-TMI, vol 27, 2008; [3]. C.T Metz, et. al, Med Img Analysis,15(2), Apr 2011; 
[4]. J-P Thirion, Med Img Analysis, vol 2, 1998; [5]. B.B Avants, et. al, Penn Image Computing and Science Laboratory, 2009,  
[6]. P.J Green, et. al, Nonparametric Regression and Generalized Linear Models: A roughness penalty approach, CRC Press, 1993 

Fig.1: (a) SA view of the 
heart aligned to (b) the 
temporal stack of original 
time series & (c) motion 
corrected time series. 
Spatio-temporal alignment 
highlighted by guide lines. 

Fig.3: (a) 17-sector plots of 
NRMSE between original and GT 
show a higher NRMSE indicating a 
degree of deviation and (b) MoCo 
and GT show a reduced NRMSE 
indicating a better correlation.   

Fig.4: Roughness measure of 
contrast curves in each sector of 
interest measured in (a) original, 
(b) GT and (c) MoCo indicate a 
decreasing trend of roughness in 
that order. 
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Introduction: Cardiac perfusion MRI provides a reliable non-invasive method for the assessment of myocardial perfusion [1]. An MR 
cardiac perfusion (PWI) scan requires approximately one minute of acquisition, resulting in PWI images that are sensitive to breathing 
motion as well as heart rate variation. Motion correction using non-rigid registration (NRR) algorithm is often used to correct for 
misalignment [2]. Typical NRR algorithms primarily assume intensity consistency across the images. Therefore, the temporal signal 
intensity changes in PWI confound NRR algorithms and can potentially introduce new artifacts or undesirable changes in signal intensity 
curves. An existing method [2] uses ICA decomposition of PWI data to separate contrast variations and generates a baseline reference 
image for each bolus phase. Our observation with a similar ICA decomposition method was the failure in motion correction in regions of 
large displacements. This might be possible due to failure of ICA to in separating contrast variations from motion. In this work, we 
propose a group-wise NRR algorithm for motion correction of cardiac PWI images. In perfusion studies, contrast could peak at different 
time points at different spatial locations. Thus, with typical pair-wise registration method, one would see pronounced differences in NRR 
results with each different reference image. The above issue is naturally absent in group-wise registration methods [3]. So we formulated 
a dense group-wise NRR for cardiac PWI data, incorporating contrast normalization and temporal smoothening to ensure robust motion 
correction in the presence of bolus contrast variations as well as irregular motion or rapid breathing. We demonstrate the efficacy of 
motion correction to retain PWI signal consistency and validate the proposed scheme by qualitative analysis and quantitative measures 
compared to ground truth. 
Methods and Materials: Patient data: In three patients with suspected ischemic heart disease, a Fast Gradient Echo perfusion 
sequence was performed under adenosine-induced stress while the patient held their breath as long as possible. The experiments were 

performed on 1.5T scanner (Signa HDxt, GE Healthcare, Milwaukee, WI). 3 slices 
in short-axis orientation (8mm slice thickness) were obtained over 40 time-points 
with 1RR interval. An IRB approved all the studies. Image intensity 
normalization: Bolus contrast related intensity variations were corrected in each 
slice and for each bolus phase as follows: Inorm = Iphase / (Iphase ⊗ Gaussianσ). The 
sigma of Gaussian filter was variable based on the image spacing as follows: 
3*pixel spacing (mm). Image registration: The first step is an affine registration for 
global alignment. This linear transformation provides correction for gross 
anatomical movements. Mutual information between the fixed and 
moving image is used as the similarity measure for rigid mapping. Next, 
we implemented a Thirion’s demons based [4] dense non-rigid 
registration where all phases were simultaneously registered to an 
evolving group-wise median (which is the reference image). We used the 
median to represent the group, since it was found to be a good 
representation for close-to-peak bolus point and captured the medial 
position of heart, yet retaining the sharpness of anatomical boundaries. The 
solution for image matching is obtained by greedy descent optimization of 

image similarity metric and subsequent Gaussian regularization [5]. We 
have chosen cross-correlation as the similarity metric due to its robustness 
to linear intensity variations. Temporal filtering: As a post-processing 
step, a temporal smoothing filter was applied over time points in order to 
eliminate the residual motion effects appearing as noise in the registered 
images. Implementation: The entire workflow was implemented with the 

Advanced Normalization Tools (ANTs) [5] used as a library along with 
functionality available in the Insight Toolkit (ITK). Evaluation schemes: 

For quantitative assessment of motion correction, a ground truth (GT) dataset was generated by manual segmentation of each slice 
at each time point, following the AHA convention. The contrast curves of original and motion corrected (MoCo) images were 
obtained from a 6+1 sector region of interest (SoI) drawn on the fixed image. NRMSE: The normalized root-mean-squared-error 
(NRMSE) values between (a). original vs. GT and (b). MoCo vs. GT were used for quantitative evaluation of motion correction. 
Roughness measure: As an effect of misalignment, a given pixel enters and exits the RoI over time resulting in a jagged contrast 
curve (Fig.3a). Post alignment, the contrast curve in a given pixel should be smoother. We quantified the roughness of the curve as 
follows: given a curve x(t) defined on an interval [a1, a2], roughness measure = 	׬ ሼ࢞"ሺ࢚ሻሽ૛ࢇ࢚ࢊ૛ࢇ૚ 	[6], where x”(t) is the second 

derivative of x(t).  
Result & Discussion: NRR motion correction contributes to an effective alignment of images across time points, and therefore, 
the spatio-temporal alignment of chest wall, the ventricles and myocardium is consistent (Fig.1c), compared to baseline images 
(Fig.1b).  From Fig.2, it can be observed that the MoCo curves are very similar to the GT curves. Use of temporal filtering leads 
to improved alignment of heart wall edges beyond the non-rigid alignment and also denoises the data. Therefore, the MoCo 
curves are smoother compared to GT curves. This is further quantified by the NRMSE (Fig. 3) and roughness plots (Fig. 4). Fig.3 
shows the bull’s-eye plot representation of NRMSE between original series and ground truth (Fig.3a) vs. motion corrected series 
and ground truth (Fig.3b) in different sectors of interest. The plots indicate a consistent performance of motion correction across all 
sectors and slices of each heart. Fig.4 shows a bull’s-eye plot of roughness measure in original images (Fig.4a), ground truth 
(Fig.4b) and motion corrected images (Fig.4c). The effect of registration and subsequent temporal filtering can be observed as 
considerable decrease (order of magnitude 103) in the measure of roughness consistently across sectors and slices in each case.  
Conclusion: We have presented a motion correction scheme for cardiac perfusion MR images which has demonstrated robust 
performance in initial testing, providing improved qualitative and quantitative results. This technique has the potential to enable diagnosis with increased confidence in 
qualitative and quantitative myocardial perfusion analyses and will be examined closely in further studies.  

Fig.2: The contrast curves in all slices in a 
typical case. Each curve corresponds to one SoI. 
(a) The jaggedness of curve represents the 
misalignment of pixels in the region. (b) GT 
curves represent the true course of contrast 
curves and (c) the MoCo contrast curves 
represent the alignment of pixels matching the 
GT with minor perturbations removed and no 
distortion or loss of intensity characteristics. The 
red guide lines highlight the MoCo’s conformity 
of contrast arrival time to GT.  

Proc. Intl. Soc. Mag. Reson. Med. 23 (2015)    4486.


