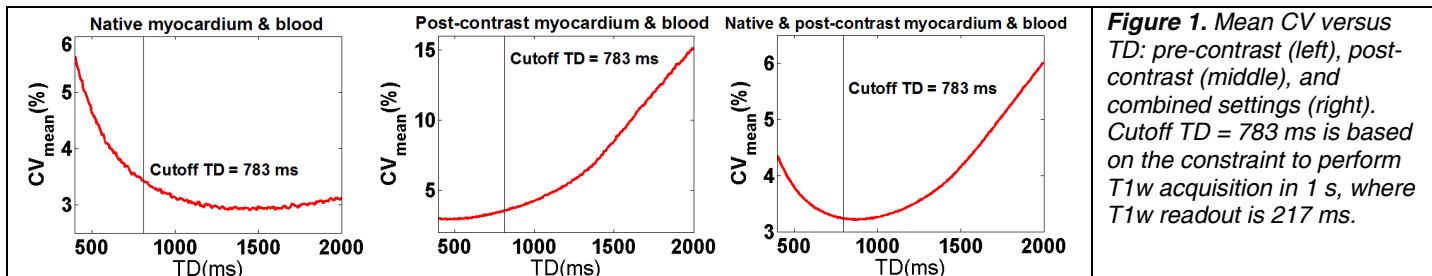


Improving the precision of arrhythmia-insensitive rapid (AIR) T₁ mapping through optimization of saturation recovery time delay

Kyle Erjin Jeong^{1,2}, Kyungpyo Hong^{1,2}, and Daniel Kim^{2,3}


¹Bioengineering Department, University of Utah, Salt Lake City, Utah, United States, ²Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, United States, ³Department of Radiology, University of Utah, Utah, United States

Purpose: Cardiac T₁ mapping pulse sequences are emerging as promising methods for assessment of diffuse cardiac fibrosis [1]. Among different cardiac T₁ mapping pulse sequences, arrhythmia-insensitive rapid (AIR) T₁ mapping is particularly promising for imaging patients with arrhythmia and limited breath-hold capacity [2]. The original AIR pulse sequence was designed with saturation recovery time delay (TD) of 600 ms, which affects both precision and scan time. We sought to perform numerical simulation to derive an optimal TD to achieve a good balance between precision and scan time.

Methods: All simulations were performed using MATLAB (MathWorks, Natick, MA, USA). Given effective saturation pulse [3] and centric k-space ordering [2], we used the Bloch equation describing T₁ relaxation in saturation recovery, Eq 1: $M_z = M_0(1 - e^{-TD/T_1})$, where M₀ is equilibrium magnetization. In AIR cardiac T₁ mapping, we acquire one proton density (PD), which in AIR is M₀, and one T₁-weighted image (T_{1w}), which is M_z. Rearranging terms, we derive Eq.2: $T_1 = -TD/\ln(1 - |T_{1w}|/|PDw|)$. Adding noise modifies the equation as Eq.3: $T_{1noise} = -TD/\ln(1 - |T_{1w} + noise|/|PDw + noise|)$. For convenience, we set PDw=M₀=1. The independent variables are TD and T₁ (see Table 1 for ranges). Our previous study reported signal-to-noise ratio (SNR) of 110 for PD_w using flip angle of 35° at 3T. Step 1, we added white Gaussian noise to achieve SNR of 110 for PD_w. Step 2, we calculated T_{1w}=M_z using Eq.1 and added the same Gaussian noise level to calculate T_{1w} with noise. Step 3, we calculated T₁ with noise using Eq. 3. This process (steps 1-3) was repeated for each combination of TD and T₁. We note that for each instance, a sample size of 3,000 was used to approach Monte Carlo simulation (i.e., multiple repetitions). Reported values represent the average of 3000 samples. We conducted this numerical simulation for 3 different settings: (i) pre-contrast, representing native myocardial and blood T₁, (ii) post-contrast, representing shorter myocardial and blood T₁, and (iii) combined setting, representing a wide range of T₁ values (see Table 1). For each instance, we calculate the coefficient of variation (CV) as standard deviation divided by mean.

Table 1. Summary of the simulated results showing the minimal CV and the corresponding TD for three combinations of tissue types of interest.

Tissue type	T ₁ values (ms) at 3T	CV _{min} (%)	TD with CV _{min} (ms)
Native myocardium & blood	1400, 2000	2.90	1450
Post-contrast myocardium & blood	400~700 (50 ms step)	2.92	440
Both native & post-contrast tissue types	400~2000 (10 ms step)	3.24	780

Figure 1. Mean CV versus TD: pre-contrast (left), post-contrast (middle), and combined settings (right). Cutoff TD = 783 ms is based on the constraint to perform T_{1w} acquisition in 1 s, where T_{1w} readout is 217 ms.

Results: Figure 1 shows plots of CV as a function of TD for three cases: (i) pre-contrast, (ii) post contrast, and (iii) combined setting (pre- and post-contrast). For pre-contrast setting, optimal TD is 1,450 ms. For post-contrast T₁ setting, optimal TD is 440 ms. For combined setting, optimal TD is 780 ms.

Discussion: We performed numerical simulation to determine an optimal TD that will produce the highest precision (low CV) in AIR cardiac T₁ mapping. Without scan time consideration, one could use TD = 1,450 ms for pre-contrast and TD = 440 ms for post-contrast settings, or TD = 780 ms for combined settings. However, in the context of cardiac T₁ mapping, it is ideal to fit the T₁-weighted acquisition within one heartbeat. Assuming heart rate of 60 bpm and given the AIR readout is 217 ms, the longest allowable TD for scan time of 1 s is 783 ms. Many patients, however, may have higher heart rates than 60 bpm. In such instances, it may be necessary to reduce TD to fit the T_{1w} acquisition within one heartbeat. This framework is adaptable to different heart rates, and one can tune the simulation generate an optimal TD for given heart rate.

Funding: NIH (HL116895-01A1), American Heart Association (14GRNT18350028).

References: [1] Moon JC, et al. *JCMR*. 2013; 15:92. [2] Fitts M, et al. *MRM*. 2013; 70(5) 1274-1282. [3] Kim D, et al. *MRM*. 2009; 62: 1368-1378.