

# Identification of quantitative differences in normal-appearing white matter of multiple sclerotic patients vs. healthy controls using a novel Bloch-simulation-based $T_2$ mapping technique

Noam Ben-Eliezer<sup>1,2</sup>, Veronica Cosi<sup>1</sup>, Akio Yoshimoto<sup>1</sup>, Daniel K Sodickson<sup>1,2</sup>, Mary Bruno<sup>1</sup>, Kai Tobias Block<sup>1,2</sup>, and Timothy M Shepherd<sup>1,2</sup>

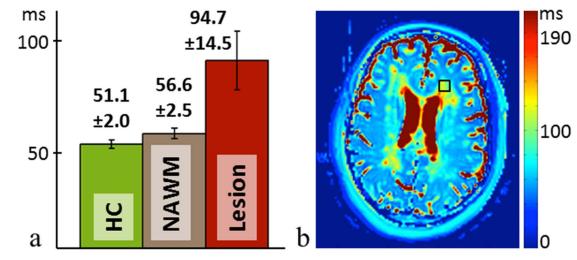
<sup>1</sup>Center for Biomedical Imaging, Department of Radiology, New York University Medical Center, New York, NY, United States. <sup>2</sup>Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States

**Target audience** Clinicians and researchers interested in rapid, accurate quantification of  $T_2$  relaxation for the diagnosis and monitoring of progression in patients with Multiple Sclerosis.

**Introduction** Multiple sclerosis (MS) is a common neurological disorder affecting young adults, and characterized by episodes of inflammation and/or neurological symptoms with insidious progression of cumulative disability. Bright lesions in the brain and spinal cord can be used to detect inflammatory lesions, but are not specific, while  $T_2$  lesion-burden or volumes alone do not always correlate well with disability. Accurate in vivo quantification of  $T_2$  values has long been hampered by the inherent bias of rapid multi spin-echo (MSE) sequences due to stimulated and indirect echoes, non-rectangular slice profile, and transmit-field ( $B_1^+$ ) inhomogeneities<sup>1,2</sup>. This bias, moreover, is pulse sequence and parameter dependent, causing  $T_2$  values in the same subject to vary between scanners and protocols. A new method for mapping  $T_2$  – the EMC algorithm<sup>3</sup> – is able to overcome these limitations and deliver accurate and reliable maps of the true tissue  $T_2$  values, independently from the scan settings<sup>4</sup>. Here we present initial results of applying the EMC algorithm for rapid and accurate  $T_2$  mapping in the brains of healthy controls, and patients with multiple sclerosis. It is shown that, owing to its high accuracy, the EMC approach is able to uncover significant differences in normal-appearing white matter which cannot be discerned using traditional techniques.

**Methods** EMC algorithm: Bloch simulations of the prospective MSE protocol were performed using the exact RF pulse shapes and other experimental parameters. Simulations were repeated for a range of  $T_2$  and  $B_1^+$  values ( $T_2=1\ldots1000\text{ms}$ ,  $B_1^+=50\ldots130\%$  deviation from nominal value), producing a database of EMCs, each associated with a unique  $[B_1^+, T_2]$  value pair. Data acquisition: 30 healthy volunteers (16 males) and 9 patients (3 males) with clinically diagnosed relapsing-remitting MS were imaged on a whole-body 3 T scanner (Siemens Skyra) using a standard MSE protocol. Scan parameters were {TR=2500 ms, Echo-spacing=12 ms,  $N_{\text{echoes}}=10$ , res=1.7x1.7mm<sup>2</sup>, slice=3 mm, bandwidth=200 [Hz/Px],  $T_{\text{acq}}=2:44\text{min}$  using 2x GRAPPA acceleration}. Reconstruction:  $T_2$  maps were generated for an axial slice using the EMC algorithm in [12] by matching the experimental EMCs derived from DICOM image sets voxel by voxel to the EMC database via  $l_2$ -norm minimization of the difference between experimental and pre-calculated EMCs. Post processing: Mean and standard-deviation (SD) were calculated for 7 regions of interest (ROIs): genu and splenium of corpus callosum, caudate nucleus, putamen, thalamus, frontal white matter and, periventricular white matter (GNU, SPL, CDN, PTM, TLM, FWM, PWM).

**Results** Table 1 summarizes the average  $T_2$  values for 7 brain ROIs in a group of 30 healthy controls (HC) versus matching ROIs in normal appearing (NA) tissue for 9 MS patients. Statistically significant  $T_2$  elevation was detected in white matter (WM), corpus callosum and thalamus of MS patients vs. healthy controls. Figure 1 (and Table 1 bottom row) illustrates the average  $T_2$  increase in normal appearing frontal white matter of the MS group, together with the expected sharp elevation inside visible lesions ROI (Figure 1b).


**Discussion** Fitting techniques which do not account for the numerous coherence pathways occurring in MSE protocols suffer from inherent bias and increased spread of the measured  $T_2$  values. This limitation is further exacerbated because the bias (accuracy) and its spread (precision) will depend on the protocol implementation and parameter set. By incorporating these factors into the library of expected spin evolutions, the EMC algorithm overcomes these limiting factors, thereby measuring statistically significant differences which would otherwise be buried beneath the inherent scanner- or protocol-dependent variability of traditional  $T_2$  mapping approaches. As demonstrated here, the MSE acquisition remains fast and clinically feasible in MS patients. The EMC framework can be accelerated using radial sampling strategies<sup>5</sup>, and extended to model other contrasts (e.g.  $T_1$ , diffusion,  $T_2^*$ ), to derive multi-component  $T_2$  distributions, or to support arbitrary acquisition schemes. Future studies will investigate whether quantitative  $T_2$  can improve tracking of MS diffusivity in the brain, or add specificity to diagnosis and monitoring of response to pharmacologic therapies.

**References** [1] Deoni SC et al. MRM 2003; 49(3):515-26. [2] Lebel RM, et al. MRM. 2010; 64(4):1005-14. [3] Ben-Eliezer N et al. MRM 2014, doi: 10.1002/mrm.25156. [4] Cosi V. et al. 23<sup>rd</sup> ISMRM 2015, submitted. [5] Ben-Eliezer N et al. 22<sup>nd</sup> ISMRM 2014; p.4274.

**Financial support:** Helen and Martin Kimmel Award for Innovative Investigation. NIH Grants: P41 EB017183; RO1 EB000447.

| SPL | Healthy Controls | MS Patients    | t-test P-value |
|-----|------------------|----------------|----------------|
| GNU | $47.4 \pm 3.1$   | $50.1 \pm 3.5$ | 0.062          |
| SPL | $56.1 \pm 3.3$   | $61.1 \pm 3.3$ | 0.001          |
| CDN | $55.0 \pm 1.9$   | $54.3 \pm 3.3$ | 0.565          |
| PTM | $49.6 \pm 1.7$   | $51.9 \pm 4.2$ | 0.145          |
| TLM | $54.6 \pm 2.3$   | $58.1 \pm 2.9$ | 0.007          |
| FWM | $51.2 \pm 2.0$   | $56.6 \pm 2.5$ | <0.001         |

**Table 1:**  $T_2$  values (Mean  $\pm$  SD) for 30 healthy controls vs. normal appearing tissue in 9 MS patients, calculated for 7 brain regions. Right column: statistical significance of the separation between the two groups.



**Figure 1:** (a) Comparison of  $T_2$  values between frontal white matter in 30 healthy controls (HC), normal appearing white matter (NAWM) ROI in 9 MS patients and, FWM lesion in 6 MS patients (Lesion). [HC & NAWM] and [NAWM & Lesion] are statistically different with  $p\text{-val} = 1.6\text{-}3$  and  $7\text{-}5$  respectively. (b) Sample  $T_2$  map of an MS patient with ROI drawn in a FWM lesion.