

Using the Ratio of T1p and T2 MR Parameters to Examine the Relationship Between Anterior Cruciate Ligament (ACL) Abnormalities and Patellofemoral Cartilage Integrity

Nathaniel E. Calixto¹, Lorenzo Nardo¹, Deepak Kumar², Richard B. Souza¹, Xiaojuan Li¹, Thomas M. Link¹, and Sharmila Majumdar¹

¹Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, United States, ²Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina, United States

Target audience: Clinicians working with the lower extremities and developers of quantitative MR sequences.

Purpose: T_{1p} and T₂ MR relaxation time mapping techniques have shown to be effective, non-invasive metrics for quantitative assessment of cartilage in osteoarthritis (OA) [1-2]. Since hydration of the cartilage contributes to T_{1p} and T₂ relaxation times [3], taking the ratio of T_{1p} to T₂ would adjust for potential hydration effects, yielding a single metric better indicative of macromolecular integrity. The purpose of the study was to evaluate the T_{1p}/T₂ ratio as a metric to explain macromolecular differences in patellofemoral joint (PFJ) cartilage between subjects with and without structural abnormalities in the anterior cruciate ligament (ACL).

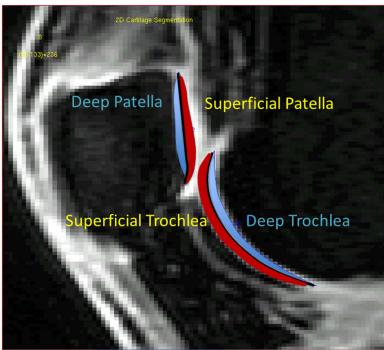


Figure 1: Patellofemoral cartilage compartments and laminar layers.

whole trochlea ($p=0.039$) as well as the superficial layer of the trochlea ($p=0.008$, Figure 2). Those with ACL abnormalities also had a significantly lower T_{1p}/T₂ ratio in the trochlea superficial layer ($p=0.019$, Figure 3). No significant differences were observed in T_{1p} between those with and without ACL pathology. In the cohort of subjects with no focal abnormalities in PFJ cartilage, those with ACL lesions had significantly lower T_{1p}/T₂ in the deep layer of the patella ($p=0.049$) and whole trochlea ($p=0.033$, Figure 4) than those with healthy ACLs. These T_{1p}/T₂ differences approached significance in the whole patella ($p=0.062$) and the trochlea superficial layer ($p=0.10$, Figure 4). There were no significant differences in T_{1p} or T₂ relaxation times between those with and without ACL abnormalities in this sub-cohort.

Discussion: Though T_{1p} and T₂ have shown strong associations with proteoglycan and collagen content in articular cartilage, respectively, hydration also influences the calculated values. We propose that normalizing T_{1p} by T₂ could eliminate the effects of hydration and provide a more appropriate metric for measuring cartilage quality at the macromolecular level. This study employed this T_{1p}/T₂ ratio to investigate the relationship between ACL abnormalities and cartilage degradation in the patellofemoral joint. Subjects with ACL lesions showed elevated T₂ relaxation times as well as reduced T_{1p}/T₂ ratio in trochlear cartilage relative to those without, suggesting compromised collagen structure and diminished cartilage integrity. In subjects without PFJ cartilage lesions, the T_{1p}/T₂ ratio was significantly lower in the PFJ cartilage of those with ACL lesions compared to those without; no significant differences were observed with T_{1p} or T₂ individually. The results from this cohort may indicate some degree of degradation in macroscopically healthy PFJ cartilage, marking the earliest changes in the OA disease process [5]. The results of this study demonstrate the potential of the T_{1p}/T₂ ratio as a tool for quantitative MR; however, the results must be considered in light of the relatively small cohort sizes. Further imaging and specimen studies are necessary to precisely understand the efficacy of the T_{1p}/T₂ ratio as a viable research and diagnostic tool.

Conclusion: The T_{1p}/T₂ MR relaxation time ratio may be useful for quantitative assessment of cartilage, as it potentially adjusts for hydration effects. ACL pathology has previously been associated with PFJOA; in this study, ACL abnormalities were associated with decreased T_{1p}/T₂ ratios in PFJ articular cartilage. Furthermore, degenerative change in the ACL may alter loading biomechanics of the PFJ, leading to the increase in relaxation time and the changes in the extra-cellular matrix.

References:

1. Duvvuri U et al., Magn Reson Med, 1997. 38(6): p. 863-7.
2. Nieminen MT et al., Magn Reson Med, 2000. 43(5): p. 676-81.
3. Menezes NM et al., Magn Reson Med, 2004. 51(3): p.503-9.
4. Stehling C et al, Radiology 2010. 254(2): p.509-20.
5. Palmer AJ et al, Bone Joint J 2013. 95-B(6): p.738-46.

Acknowledgments: This project was supported by NIH-NIAMS grants R01AR046905 and P50AR060752.

Methods: Subjects recruited from the community underwent 3-Tesla MRI. Three MR sequences were acquired: 1) a sagittal 3D high-resolution T₂-weighted isotropic fast spin echo sequence (3D FSE CUBE) for segmentation and clinical grading 2) a sagittal T_{1p}-mapping sequence and 3) a sagittal T₂-mapping sequence for quantitative assessment. The ACL and PFJ cartilage (patella and trochlea compartments) were graded on the 3D FSE images using modified Whole Organ MRI Score (mWORMS) scales [4]. Thirty subjects were identified as having structural abnormalities within the ACL such as mucoid degeneration and/or tears (mWORMS ≥ 2). Thirty subjects with no focal PFJ cartilage defects or ACL lesions (mWORMS < 2) were selected for comparison, matching age, gender, and BMI of those with ACL lesions. Of those with ACL abnormalities, 11 subjects had no focal PFJ cartilage defects and were compared with 11 other subjects without abnormalities of the patella, trochlea, or ACL and matched for age, gender, and BMI. Cartilage regions of interest (ROIs) were semi-automatically segmented on 3D FSE CUBE images using in-house software then overlaid onto T_{1p} and T₂ images for quality control; cartilage ROIs were also automatically divided into deep and superficial layers (Figure 1). T_{1p} and T₂ relaxation times were calculated for whole cartilage ROIs as well as laminar layers. T_{1p} values were then divided by the T₂ values to yield the T_{1p}/T₂ ratio. Student's t-test was used to compare T_{1p} and T₂ relaxation times and T_{1p}/T₂ ratios between subjects with and without ACL lesions, using an alpha level of $P < 0.05$.

Results: Individuals with ACL lesions had significantly higher T₂ relaxation times compared to those without in the

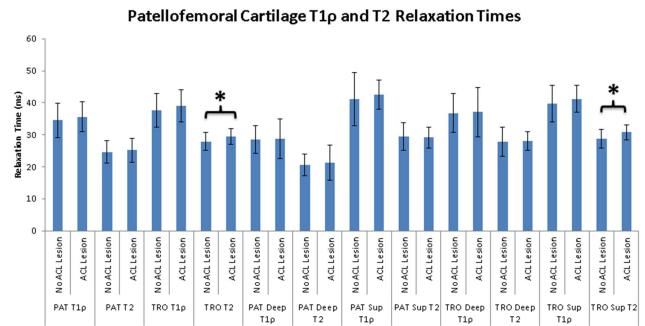


Figure 2: T_{1p} and T₂ relaxation times in whole and laminar patellofemoral cartilage of subjects with and without structural abnormalities of the ACL.

* signifies $p < 0.05$.

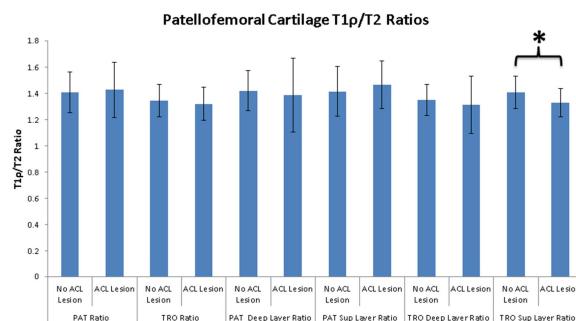


Figure 3: T_{1p}/T₂ relaxation time ratios in whole and laminar patellofemoral cartilage of subjects with and without structural ACL abnormalities.

* signifies $p < 0.05$.

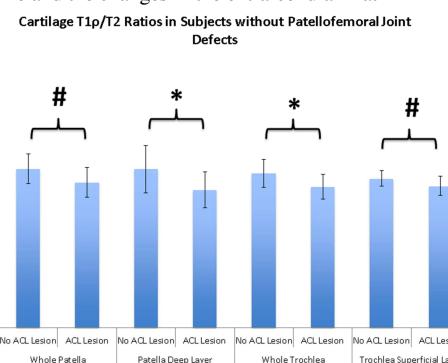


Figure 4: T_{1p}/T₂ ratios in subjects with healthy patellofemoral cartilage with and without structural ACL abnormalities.

* signifies $p < 0.05$, # signifies $0.05 < p \leq 0.10$.