Assessment of the clinical relevance of triple-echo steady-state T2 mapping in articular cartilage

Vladimir Juras^{1,2}, Klaus Bohndorf¹, Rahel Heule³, Claudia Kronnerwetter¹, Pavol Szomolanyi^{1,2}, Benedikt Hager¹, Oliver Bieri³, and Siegfried Trattnig¹

¹High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria, ²Department of Imaging Methods, Institute of Measurement Science, Bratislava, Slovakia, ³Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland

TARGET AUDIENCE Musculoskeletal Radiologists and Physicists

PURPOSE Transversal relaxation time (T_2) mapping in articular cartilage has been previously reported as a reliable marker for the evaluation of collagen matrix and water content [1,2]. Recently, a triple-echo steady-state (TESS) relaxometry method has been introduced for fast and accurate T_2 and T_1 mapping [3]. In this study, the clinical relevance of T_2 , measured by TESS in knee cartilage, was assessed in comparison to standard multi-echo spin-echo T_2 .

METHODS Thirteen volunteers (31.4±9.4yrs) and ten patients (35.1±10.5yrs) with a focal cartilage lesion were included in the study; right knees were measured. The local ethics commission approved this study, and all participants gave written, informed consent. All subjects underwent MR examinations at 3 Tesla (Siemens, Erlangen, Germany) consisting of two methods: multi-echo multi-slice spin echo sequence (CPMG) as a reference method for T₂ mapping (time of acquisition, TA, 4:30 min) [1]; and 3D TESS [3] with the exact same geometry settings, but variable TA—standard (TESSs TA 4:35 min) and quick (TESSq TA 2:05 min). For TESSq, the TA was reduced by employing a phase and slice partial Fourier. T₂ values were compared in six different regions in the femoral and tibial cartilage using a paired t-test (difference) and the Pearson correlation coefficient. Also, the correlation of TESSs and TESSq were compared to validate the similarity of T₂ values. For patients, the T₂ values from a focal lesion were compared to the adjacent native cartilage, similarly to [4].

RESULTS Both TESS and CPMG maps were of high quality and artifact-free (Figs. 1 and 2). In volunteers, quantitatively, the mean T_2 values measured by CPMG were significantly higher compared to those measured with TESS in all regions (total mean 45.97 ± 9.3 ms versus 30.87 ± 4.9 ms), the correlation was found mostly in weight-bearing zones (Fig. 3 and 4). Both the standard and quick versions provided highly correlated T_2 values in cartilage (mean Pearson 0.816). As for patients, TESS and CPMG performed similarly, but TESS provided a slightly larger difference between lesions and native cartilage (CPMG: 90.21ms $\rightarrow61.70$ ms, p=0.0125; TESS 31.71ms $\rightarrow24.15$ ms, p=0.0839).

DISCUSSION Compared to CPMG, 3D-TESS provides a very similar distribution of T_2 values in cartilage, although with systematically reduced absolute values (in approx. 33%). None of the methods was superior with regard to T_2 variation (relatively high standard deviations are likely attributable to the complex cartilage structure). Both methods demonstrated the ability to distinguish between healthy cartilage and lesions. Most importantly, 3D-TESS provides results similar to CPMG within substantially shorter scan times. This benefit will be even more pronounced

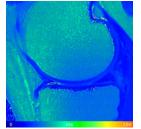


Fig. 1. Example of T₂ map measured by CPMG

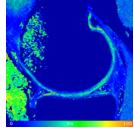
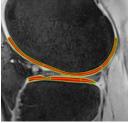
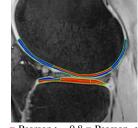




Fig. 2. Example of T_2 map measured by TESS

■ p =< 0.05 ■ p > 0.05 Fig. 3. P-values calculated from paired t-test (CPMG vs

■ Pearson >= 0.8 ■ Pearson < 0.8 Fig. 4. Correlations calculated between T_2 values of CPMG and TESS

Table 1	FEMORAL CARTILAGE					
	AFCs	AFCd	MFCs	MFCd	PFCs	PFCd
T ₂ (CPMG)	62.40	53.40	68.93	55.42	59.36	54.29
T ₂ (TESS)	36.99	28.32	32.69	23.10	34.53	29.59
t-test	0.000	0.000	0.000	0.003	0.000	0.000
PEARSON	0.535	0.455	0.701	0.808	0.497	0.300
	TIBIAL CARTILAGE					
Table 2	TIBIAL	CARTILA	GE			
Table 2	TIBIAL ATCs	CARTILAC ATCd	GE MTCs	MTCd	PTCs	PTCd
Table 2 T ₂ (CPMG)				MTCd 38.00	PTCs 57.65	PTCd 42.78
	ATCs	ATCd	MTCs			
T ₂ (CPMG)	ATCs 51.17	ATCd 33.58	MTCs 52.65	38.00	57.65	42.78

Acronyms: FC Femoral Condyle, TC Tibial Condyle, A Anterior, P Posterior, M Medial, d Deep, s Superficial

at ultra-high-field MR systems, where the TA of conventional T_2 mapping is substantially compromised due to specific absorption rate issues. T_1 mapping, which is also a product of the 3D-TESS sequence, was not tested in our study, although it also may have great potential.

CONCLUSION 3D-TESS provides fast, reliable, and B_0 - and B_1 -insensitive T_2 mapping in cartilage, opening a variety of possible applications requiring high temporal resolution (e.g., the monitoring of cartilage response to loading).

REFERENCES

[1] Welsch G. et al. Cartilage T2 Assessment at 3-T MR Imaging, Radiology, 247(1), 2008. [2] Apprich S. et al. Quantitative T2 mapping of the patella at 3.0 T is sensitive to early cartilage degeneration, but also to loading of the knee, European Journal of Radiology, 81, 2012. [3] Heule R. et al. Triple Echo Steady-State (TESS) Relaxometry, Magn Reson Med. 2014 Jan;71(1):230-7. doi: 10.1002/mrm [4] Welsch et al. T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation: initial results on clinical use with 3.0-Tesla MRI, European Radiology, 20 (6), 2010. **Acknowledgement**: Funding support provided by Austrian Science Fund (FWF) P 25246 B24