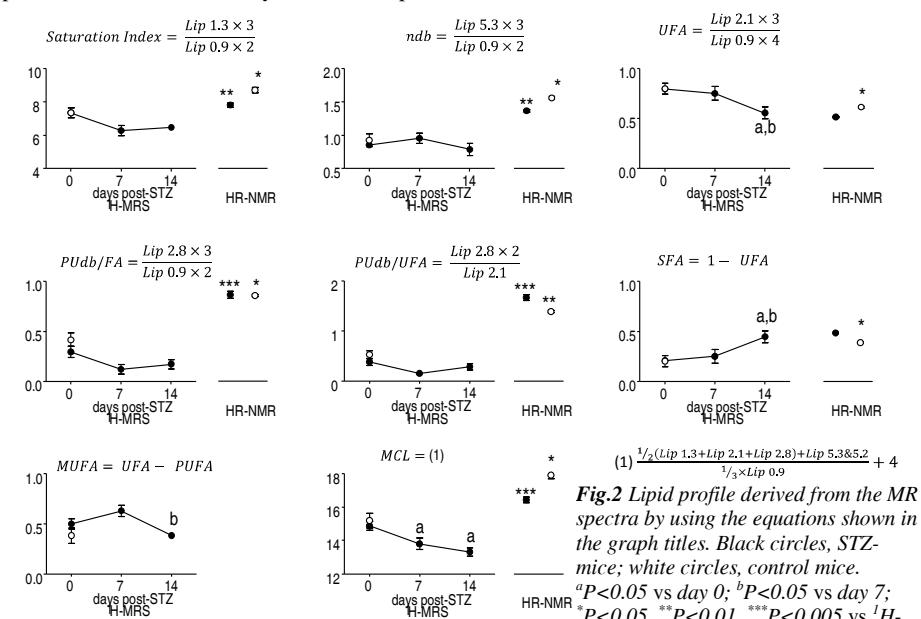

ALTERATIONS IN THE HEPATIC LIPID PROFILE OF MICE FOLLOWING STREPTOZOTOCIN-INDUCED DIABETES

ANA FRANCISCA SOARES¹, HONGXIA LEI², AND ROLF GRUETTER¹

¹LIFMET, EPFL, LAUSANNE, VAUD, SWITZERLAND, ²RADIOLOGY, UNIVERSITY OF GENEVA, GENEVA, GENEVA, SWITZERLAND

PURPOSE: Alterations in the hepatic lipid content (HLC) and profile are associated with derangements in whole body metabolism. We used ¹H-MRS to follow longitudinal changes in the hepatic cytosolic lipids of mice after the induction of diabetes by streptozotocin (STZ). In addition, we assessed the total lipids by performing HR-NMR on liver extracts, thus gaining insight into the membrane phospholipids.

METHODS: C57BL/6J mice received an i.p. injection of STZ (180 mg/Kg) resulting in glycemia \geq 15 mM. Mice were scanned before, 7 and 14 post-STZ, when they were sacrificed and the lipids extracted from the livers by the Folch method. Control mice were also scanned immediately after sacrifice. Mice were scanned under isofluorane anesthesia with a ^1H quadrature surface coil (two 13 mm-inner-diameter physically decoupled loops) over the abdomen, in a 14.1T-26 cm magnet. Breathing rate and body temperature were monitored through an MR-compatible system, which also delivered respiratory gating signals for all the MR acquisitions. Anatomical multi-slice GRE images ($30 \times 30 \text{ mm}^2$, 128 \times 128, TE 4.5 ms, minimum TR) were acquired and localized ^1H -MR spectra obtained from a 8 μl voxel confined to the liver with STEAM (TM, 20 ms; TR, 6.5 s; TE, 8; 32 scans). HLC was estimated as the area of lipid methylene protons (Lip1.3) relative to that of the water plus Lip1.3, with corrections for T_2 decay. Lipid spectra were acquired with STEAM (TM, 20 ms; TR, 5 s; TE, 2.8; 128 scans) and water suppression^[1] without T_2 corrections due to the use of an ultra-short echo time^[2] and by HR-NMR *in vitro* from the lipid extracts in a Bruker DRX-600 spectrometer with a cryo-probe tuned to ^1H (Fig 1). The lipid profile was derived from both measurements by using the indices shown in the equations in Fig 2. Data are mean \pm SEM. Statistical significance was accepted for $P < 0.05$ determined with repeated measurements 1-way ANOVA or paired student's t test.


Fig.1 Top: general structure of a glyceride; in triglycerides both R and R' are fatty acyl chains; in PC R' is a phosphate group linked to choline. Bottom: Spectra acquired from the mouse liver and the lipid liver extracts. Cho, cholines; Glc, glucose; Glyc, glycogen; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PUFA and DUFA poly- and di-unsaturated fatty acyl chains; Tau, taurine.

RESULTS AND DISCUSISON: HLC of STZ-mice before injection was $1.7 \pm 0.3\%$, similar to that of controls ($1.4 \pm 0.1\%$), but decreased ($P < 0.05$) to $0.6 \pm 0.04\%$ 7 days post-STZ without further changes with STZ injection as determined by ^1H -MRS (Fig 2): the liver extracts from both control and STZ-mice were presence of tri- an higher poly-unsaturated fatty acyl c. This reflects the presence of membrane lipids which a 1/3 of lipid chains in the extracts were from phosphatidyl HR-NMR estimations in control mice, those performed alterations in the cytosolic lipids were echoed in me suggests an imbalance in membrane PUFAs, since the hepatic lipids in STZ-mice agree with increased lipid b

CONCLUSIONS: The profile of both cytosolic and membrane lipids is affected in STZ-diabetic mice that experience a reduction in HLC. Lipid-targeted interventions in this and other models of hepatic lipid depletion can be potentially followed by ^1H -MRS methods at high fields.

REFERENCES: ^[1]Tkac I et al. *Magn Reson Med.* 1999; 41:649. ^[2]Soares AF et al. *ISMRM Proc.* 2013: 4040. ^[3]Bohov P et al. *Ann. N. Y. Acad. Sci.* 1997; 827:494. . .
^[4]Jourdan T et al. *J. Nutr.* 2009; 139:1901. ^[5]Wang Y et al. *J. Lip. Res.* 2006; 47:2028

Supported by the Centre d'Imagerie BioMédicale (CIBM) of the UNIL, UNIGE, HUG, CHUV, EPFL and the Leenaards and Louis-Jeantet Foundations.

Fig.2 Lipid profile derived from the MR spectra by using the equations shown in the graph titles. Black circles, STZ-mice; white circles, control mice.

^a $P<0.05$ vs day 0; ^b $P<0.05$ vs day 7; ^c $P<0.05$, ^{**} $P<0.01$, ^{***} $P<0.005$ vs ¹H-MRS *in vivo* for the same group.

ndb, number of double bonds; *SFA*, *UFA* and *MUFA*, saturated-unsaturated- and monounsaturated-fatty-acyl chains (FA); *PUdb*, poly-unsaturated double bonds; *MCL*, mean chain length.