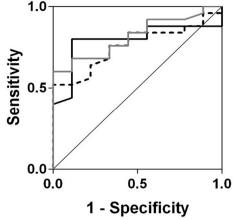
Functional MRI Ventilation Discriminates Well-controlled Asthmatic and Healthy Subjects: Sensitivity, Specificity and Comparison with FEV₁

Sarah Svenningsen^{1,2}, Bastiaan Driehuys³, David G McCormack⁴, and Grace Parraga^{1,2}

¹Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada, ²Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada, ³Department of Radiology, Duke University, Durham, North Carolina, United States, ⁴Division of Respirology, Department of Medicine, The University of Western Ontario, London, Ontario, Canada

Target Audience: Scientists and clinicians interested in pulmonary functional magnetic resonance imaging (MRI) to quantitatively evaluate asthma. Purpose: Asthma is commonly diagnosed and monitored using the spirometry measurement of the forced expiratory volume in one second (FEV.) - a global measurement of lung function made at the mouth that is relatively insensitive to structural and functional changes in the small airways <2mm. Accordingly, there is an urgent need for identification of the control of the c

Discussion: MRI ventilation measurements discriminated asthmatic patients from healthy controls with accuracy not significantly different from FEV₁, a clinically-accepted measurement of disease. Estimated likelihood ratios suggested that the most accurate diagnosis of asthma was generated using ³He MRI VDP.


Conclusions: ³He MRI measurements of ventilation in the state of the

significantly discriminated asthmatic patients from healthy controls and this is a necessary step towards clinical translation and regulatory approval. Because it is well-understood that ¹²⁹Xe MRI is more sensitive to ventilation abnormalities in asthma than is ³He MRI⁴, next steps include validation of ¹²⁹Xe MRI ventilation measurements in asthmatics before, during and after methacholine challenge.

 Table 1. Subject measurements for asthmatic patients and healthy volunteers.

Parameter (±SD)	Healthy (n=9)	Asthma (n=26)
Age yrs	34 (11)	35 (11)
Male Sex	5	11
BMI kg/m ²	22 (3)	26 (5)
FEV ₁ $\%_{\text{pred}}$	101 (9)	84 (15)
VDP %	1.4 (0.4)	3.3 (3.1)
VenCOV	0.19 (0.01)	0.20 (0.02)

SD=Standard Deviation, BMI=Body Mass Index, FEV₁=forced expiratory volume in 1 second; VDP, ventilation defect percent; VenCOV, ventilation coefficient of variation.

Figure 1. Receiver operating characteristic curve for the diagnosis of asthma using forced expiratory volume in one second (FEV₁, grey solid line), He MRI ventilation defect percent (VDP, black solid line) and ventilation coefficient of variation (VenCOV, black dashed line). The areas under the curve ± 95% confidence interval and associated p-value were: FEV₁. 0.82±0.67 to 0.96, p=0.006; VDP, 0.79±0.63 to 0.95, p=0.01; VenCOV, 0.76±0.60 to 0.92, p=0.02.

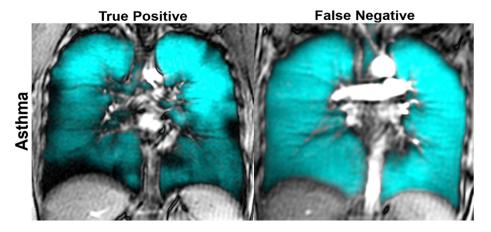


Figure 2. ³He MRI ventilation for two well-controlled asthmatics under treatment. The true positive is a 36 yr old F, $FEV_1=66\%_{pred}$, $PC_{20}=0.08mg/mL$, VDP=7.8% and the false negative is a 23 yr old F, $FEV_1=96\%_{pred}$, $PC_{20}=16.89mg/mL$, VDP=0.9%. It is worth noting that for the false negative, the clinical findings including FEV_1 and PC_{20} are also not diagnostic of asthma.

References:

- S: Burgel P. Eur Respir Rev. 2011;20:23–33. Kirby M et al. Acad Radiol. 2012;19(2):141-152. Sheikh K et al. J Appl Physiol. 2014;117(3):297-306. Svenningsen S et al. J Magn Reson Imaging. 2013;38(6):1521-1530.