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Target Audience  Researchers interested in developing or applying techniques for accelerating resting state FMRI data acquisition. 
Purpose Robust investigation of network structure in the human brain using functional magnetic resonance imaging (FMRI) can require a large number of time points, 
particularly if networks are derived using temporal independence criteria1. We previously introduced a new method for accelerating FMRI data acquisition called k-t 
FASTER2, which exploits the fact that analysis models have shown that most of the salient network information in FMRI data lies in a low dimensionality (low rank) 
subspace, and that low rank data have reduced degrees of freedom that permit undersampled recovery3. Our previous work focused on a 3D EPI sampling strategy, 
which resulted in limited acceleration factors due to central k-space sampling requirements, and more coherent artefacts. Here we demonstrate our rank constrained k-t 
FASTER approach with 3D hybrid golden angle radial-Cartesian k-space sampling4,5, which densely samples central k-space regions, facilitates flexible volume 
sampling rates (and undersampling factors), and reduces artefact coherence. Recovery of resting state network (RSN) information across varying acceleration factors is 
explored, with volume TRs ranging from 3 s to 0.4 s in the same data. 
 
Methods Figure 1 shows a schematic of the k-space sampling trajectory consisting of radial “blades,” which are EPI readouts (phase encode along kz), rotated about the 
z-axis according to an angular increment defined by the golden ratio (111.25º). This increment scheme is known to produce nearly uniform k-space sampling for 
arbitrary contiguous subsets of blades6, which allows the volume TR of the acquisition (dictated by the number of blades contributing to a single time point) to be 
chosen post hoc, based on maximum tolerable undersampling factors. Data were acquired in 2 healthy volunteers at 3 T, using a TR/TE = 50/25 ms, and a parallel 
imaging acceleration factor of 2 along the EPI phase encode direction, which was reconstructed using GRAPPA prior to k-t FASTER. Sampling parameters were 
chosen for an output whole-brain resolution of 2 mm isotropic, which would require about 157 (100×π/2 ) blades per time point to radially sample according to Nyquist 
criteria. A total of 6000 blades were acquired over a 5 minute duration, and reconstructed at R=1.67x (60 blades/time point), R=2.5x (40), R=3.33x (30), R=5.0x (20), 
R=6.67x (15), R=8.33x (12), R=10x (10), and R=12.5x (8) in one subject, and at R=1.67, 2.5, 3.33, 6.67, 10 and 12.5x in the second subject, where acceleration factors 
are reported relative to the efficiency of an equivalent Cartesian acquisition. Reconstructions were performed slice by slice after inverse Fourier transform along the z-
direction, at rank 64 in all cases by solving the optimisation problem:  min௑ ‖ܻ െ .ݏሺܵܺሻ‖ଶܶܨܨݑ݊ rankሺܺሻ		.ݐ ൌ 64 , 

 
where ܻ are the multi-coil k-space 
measurements, ܵ is a sensitivity matrix, 
and ܺ is the estimated data. A non-linear, 
multi-coil iterative hard thresholding and 
matrix shrinkage algorithm was used to 
solve the optimisation7, and the non-
uniform FFT (݊ܶܨܨݑ) operator was 
provided by the NUFFT toolbox8. 
Following reconstruction, the data were 
analysed for resting state network 
expression by performing a dual 
regression against a set of 64 model 
regressors derived from a separate, large 
group average dataset9. 
 
Results Figure 2 shows the results of the 
reconstructions at varying acceleration 
factors, assessed by z-transformed 
correlation of dual regression output 
maps with the model networks, and 
smoothness of the z-stat maps (in resels), 

averaged across all 64 networks studied. As expected, RSN fidelity increases with increasing 
acceleration (and corresponding increase in the temporal degrees of freedom), until it becomes too high 
for the rank-constrained reconstruction to produce reliable data. As a result, RSN correlations can 
decrease (subject 1), and data begin to show degradation of spatial resolution (both subjects), which can 
be seen in the R=12.5x data when the smoothness measure exceeds the prescribed voxel volume of 8 
mm3. Figure 3 shows z-statistic a RSN map from the R=3.33, 8.33 and 12.5x datasets of the first subject, 
selected to demonstrate the general trend. 
 
Discussion The hybrid-radial acquisition scheme allows reconstruction to be optimised for maximum 
data efficiency, by permitting multiple post hoc choices for temporal bin widths while maintaining 
uniform k-space coverage. One drawback of this sampling approach is that the densely sampled centre 
of k-space combined over multiple shots can cause phase cancellation and artificial signal dropout or 
variance. Increasing the acceleration factor reduces this effect, but may introduce additional artefacts due 
to high degrees of radial undersampling. The balance of temporal degrees of freedom with 
reconstruction quality leads to an optimal acceleration factor, found here to be around R=8.33-10x, 

corresponding to a volume TR=0.5-0.6 s. Shot-by-shot phase correction approaches may also significantly improve the quality of multi-shot data5.  
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Figure 1 – Schematic diagram of the hybrid radial-
Cartesian k-space sampling strategy. Each radial 
projection is an entire EPI readout along kz, and 
the projections are rotated by 111.25º every TR. 

Figure 2 – Scatter plot of z-transformed correlations of the dual 
regression output maps with model network maps, and smoothness 
estimates of the z-statistic maps, across various reconstructed 
acceleration factors. Marker size encompasses standard errors. 

 
Figure 3 – z-statistic maps (|z| > 2.3) for a left fronto-
parietal network, across three different acceleration factors. 
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