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Target_ Audience Researchersinterested in developing or applying techniques for accelerating resting state FMRI data acquisition.

Purpose Robust investigation of network structure in the human brain using functional magnetic resonance imaging (FMRI) can require alarge number of time points,
particularly if networks are derived using temporal independence criteria®. We previously introduced a new method for accelerating FMRI data acquisition called k-t
FASTER?, which exploits the fact that analysis models have shown that most of the salient network information in FMRI data liesin alow dimensionality (low rank)
subspace, and that low rank data have reduced degrees of freedom that permit undersampled recovery®. Our previous work focused on a3D EPI sampling strategy,
which resulted in limited acceleration factors due to central k-space sampling requirements, and more coherent artefacts. Here we demonstrate our rank constrained k-t
FASTER approach with 3D hybrid golden angle radial-Cartesian k-space sampling®®, which densely samples central k-space regions, facilitates flexible volume
sampling rates (and undersampling factors), and reduces artefact coherence. Recovery of resting state network (RSN) information across varying acceleration factorsis
explored, with volume TRs ranging from 3 sto 0.4 sin the same data.

Methods Figure 1 shows a schematic of the k-space sampling trajectory consisting of radial “blades,” which are EPI readouts (phase encode along k), rotated about the
z-axis according to an angular increment defined by the golden ratio (111.25°). Thisincrement schemeis known to produce nearly uniform k-space sampling for
arbitrary contiguous subsets of blades®, which allows the volume TR of the acquisition (dictated by the number of blades contributing to a single time point) to be
chosen post hoc, based on maximum tolerable undersampling factors. Data were acquired in 2 healthy volunteersat 3 T, using a TR/TE = 50/25 ms, and a parallel
imaging acceleration factor of 2 along the EPI phase encode direction, which was reconstructed using GRAPPA prior to k-t FASTER. Sampling parameters were
chosen for an output whole-brain resolution of 2 mm isotropic, which would require about 157 (100xx/2 ) blades per time point to radially sample according to Nyquist
criteria. A total of 6000 blades were acquired over a5 minute duration, and reconstructed at R=1.67x (60 blades/time point), R=2.5x (40), R=3.33x (30), R=5.0x (20),
R=6.67x (15), R=8.33x (12), R=10x (10), and R=12.5x (8) in one subject, and at R=1.67, 2.5, 3.33, 6.67, 10 and 12.5x in the second subject, where acceleration factors
are reported relative to the efficiency of an equivalent Cartesian acquisition. Reconstructions were performed slice by slice after inverse Fourier transform along the z-
direction, a rank 64 in all cases by solving the optimisation problem:

min. ¥ = nuFFT(SX)|l,

X s.t. rank(X) = 64’

where Y are the multi-coil k-space
measurements, S isa senditivity matrix,
and X isthe estimated data. A non-linear,
multi-coil iterative hard thresholding and
matrix shrinkage algorithm was used to
solve the optimisation’, and the non-
uniform FFT (nuFFT) operator was
provided by the NUFFT toolbox®.
Following reconstruction, the data were
analysed for resting state network
expression by performing a dual
regression against a set of 64 model
regressors derived from a separate, large
group average dataset®.

Results Figure 2 shows the results of the

Figure 1 — Schematic diagram of the hybrid radial- ~ Figure 2 — Scatter plot of z-transformed correlations of the dual reconstructions at varying acceleration
factors, assessed by z-transformed

Cartesian k-gpace sampling strategy. Each radial regression output maps with model network maps, and smoothness | -
projection is an entire EPI readout along k., and estimates of the z-statistic maps, across various reconstructed correlation of dual regression output
the projections are rotated by 111.25° every TR. acceleration factors. Marker size encompasses standard errors. maps with the mode! networks, and

smoothness of the z-stat maps (in resels),
averaged across all 64 networks studied. As expected, RSN fidelity increases with increasing
acceleration (and corresponding increase in the temporal degrees of freedom), until it becomes too high
for the rank-constrained reconstruction to produce reliable data. As aresult, RSN correlations can
decrease (subject 1), and data begin to show degradation of spatial resolution (both subjects), which can
be seen in the R=12.5x data when the smoothness measure exceeds the prescribed voxel volume of 8
mm?®. Figure 3 shows z-statistic a RSN map from the R=3.33, 8.33 and 12.5x datasets of the first subject,
selected to demonstrate the general trend.

Discussion The hybrid-radial acquisition scheme allows reconstruction to be optimised for maximum
data efficiency, by permitting multiple post hoc choices for temporal bin widths while maintaining
uniform k-space coverage. One drawback of this sampling approach is that the densely sampled centre

of k-space combined over multiple shots can cause phase cancellation and artificial signal dropout or
variance. Increasing the acceleration factor reduces this effect, but may introduce additional artefacts due
to high degrees of radial undersampling. The balance of temporal degrees of freedom with

reconstruction quality leads to an optimal acceleration factor, found here to be around R=8.33-10x,
corresponding to a volume TR=0.5-0.6 s. Shot-by-shot phase correction approaches may also significantly improve the quality of multi-shot data®.

Figure 3 — z-statistic maps (|z| > 2.3) for aleft fronto-
parietal network, across three different acceleration factors.
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