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Purpose

Respiratory stimuli are commonly used in calibrated fMRI techniques. The most commonly used forms are mild hypercapnia and hyperoxia. It is
usually assumed that these challenges have negligible impact on oxygen metabolism, although there is some debate about this.! However the
Davis model®” is reliant on certain assumptions about the effects they have on CBF, and SvO,, and it implicitly assumes that the arterial oxygen
saturation (Sa0,) is 1.0. In general, it is assumed that hyperoxia has a negligible effect on SaO,, but a pronounced effect on the partial pressure
(Pa0O,), while hypercapnia has no effect on either SaO, or PaO, and only affects the CBF and thereby the venous saturation (SvO,). Near-
infrared spectroscopy (NIRS) is capable of non-invasively measuring the relative concentrations of oxygenated and deoxygenated haemoglobin
via a term called the tissue saturation (StO,), and in a completely independent approach to MRI. StO, is effectively the oxy:deoxyhaemoglobin
ratio averaged over the total blood volume. We have tested the impact of a simple dual-gas respiratory paradigm on arterial and tissue
saturations.

Methods & Results

Ten healthy subjects were recruited (6 male, mean age 24+3 years) and monitored during a 16.5 minute hypercapnia/hyperoxia paradigm
identical to that used in calibrated fMRI experiments.4 A 2-channel NIRS cerebral oximeter (Casmed Fore-Sight, CT, USA) was used to measure
tissue saturation in the frontal lobes at 2 second intervals, by placing sensors on the foreheads of the supine subjects. A finger-clip Nonin
7500FO pulse oximeter (Nonin, MN, USA) was used to acquire simultaneous arterial saturation values, which were sampled with a Powerlab
data acquisition module (ADInstruments, Dunedin, New Zealand). The gases were delivered and sampled through a 2-tube nasal cannula and
monitored by an ADInstruments Gas Analyser connected to the Powerlab. The gas paradigm consisted of 2 mins hypercapnia/l min air/3 mins
hyperoxia/2 mins air, repeated twice, and preceded by 40secs air (see Fig. 2). All gases were delivered at a flow rate of 8 I/min. Gas mixtures
consisted of medical air (21% O,, balance nitrogen); 10% CO, for hypercapnia (with 21% O, and balance nitrogen), and 100% O, for hyperoxia;
resulting in an inspired CO, fraction of ~ 4%; and inspired O, fraction of ~ 50% due to mixing with room air.

Data were averaged across all subjects at each time point. NIRS readings (StO,) were temporally smoothed (25sec kernel) and then converted
into venous oxygen saturation (SvO,) using the SaO, measured by the pulseox as follows: SvO, = (StO, — 0.3xSa0,)/0.7. This expression
assumes that the arterial and venous compartments occupy 30% and 70% of the blood pool respectively, as is commonly assumed by NIRS
manufacturers.’ Arterial saturation (SaO,) values were similarly averaged and smoothed and are shown in red in Fig. 1. The group averaged StO,
time-course also showed the effect of the gas paradigm, independently of the SaO, measures. Fig. 2 shows the end-tidal derived SaO, from a
single representative subject, and has not been averaged or smoothed. Fig. 2 also shows the timings of the gas paradigm. The data shown in Fig.
2 needs to be treated with caution, as without an accurately calibrated gas monitor, and exact knowledge of the atmospheric pressure, the
alveolar—arterial (A-a) gradient and the haemoglobin concentration of the individual subject this cannot be calculated with sufficient accuracy.
However it clearly demonstrates that the trends seen in the NIRS and pulseox data are also present in the end-tidal trace.
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