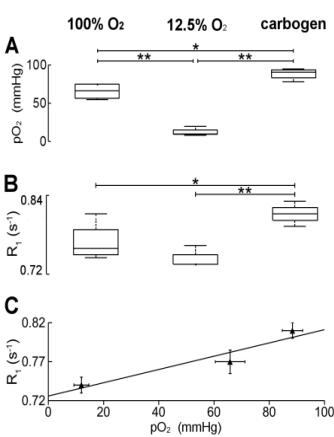


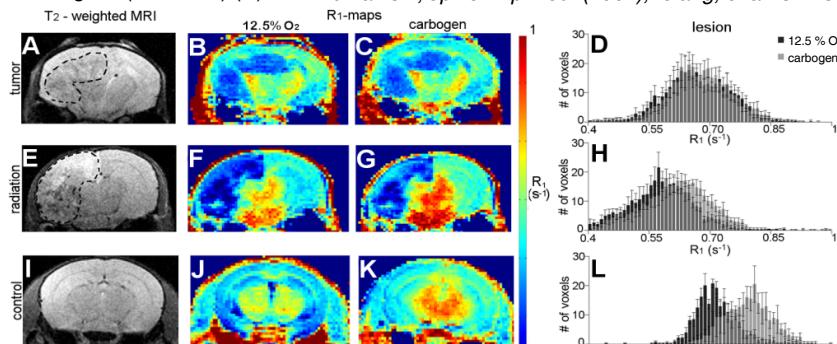
MRI-based measurement of tissue O₂

Scott C. Beeman¹, Ying-Bo Shui², John A. Engelbach¹, Joseph J.H. Ackerman^{1,3}, and Joel R. Garbow¹

¹Radiology, Washington University, Saint Louis, Missouri, United States, ²Ophthalmology, Washington University, Saint Louis, Missouri, United States, ³Chemistry, Washington University, Saint Louis, Missouri, United States


INTRODUCTION: Diatomic oxygen (O₂), as found dissolved in tissue, is a critical component in aerobic metabolism and a fundamental determinant of physiological functional status. Reliable, non-invasive methods for measuring tissue O₂ content are lacking. Positron emission tomography (PET) and quantitative blood-oxygen level dependent (BOLD) magnetic resonance imaging (MRI) have shown promise as surrogate markers of tissue O₂, however, these methods are indirect and inferential. O₂ is weakly paramagnetic and therefore influences the ¹H longitudinal relaxation rate constant (R₁) of tissue water, thus, R₁ can be exploited as a surrogate marker of tissue oxygenation¹⁻⁵. Herein, we quantify the relationship between R₁ and O₂ concentration (relaxivity) and use this relationship to quantify changes in tissue oxygenation in healthy rodent brain, radiation lesions, and tumor lesions to differentiate the two pathologies.

METHODS: *In vivo relaxivity measurements:* R₁ data were collected in healthy mice (n=4) during free breathing of pure oxygen, 12.5% O₂/87.5% N₂, and 95% O₂/5% CO₂ (carbogen) using a fast-spin-echo, inversion recovery imaging sequence at 4.7 T (32 inversion times; non-slice selective inversion pulse to mitigate flow contributions to R₁ measurements). From these data, magnetization recovery was modeled and R₁ was calculated using Bayesian probability theory-based methods (bayesiananalysis.wustl.edu). In a separate experiment, pO₂ was measured in the thalamus of healthy mice (n=4) using an O₂-sensitive optical probe (Oxford Optronix, Abingdon, OX, UK). Using these data, the relaxivity of tissue O₂ (r₁) was calculated via the relationship: R₁ = R_{1,0} + (r₁ x pO₂), where pO₂ is oxygen partial pressure and R_{1,0} is the tissue R₁ relaxation rate constant in the absence of O₂ (a constant offset). *Models of pathology:* R₁ data were collected in control-state (n=4), DBT glioma model⁶ (n=7), and radiation necrosis model⁷ (n=6) mice during free breathing of the 12.5% O₂/87.5% N₂ and carbogen gas mixtures using the sequence described above.


RESULTS: *In vivo relaxivity measurements:* Optically measured pO₂ values were 66±11 mmHg, 12±5 mmHg, and 88±7 mmHg during free breathing of pure oxygen, 12.5% O₂/87.5% N₂, and carbogen, respectively (Fig. 1A). R₁ values in the thalamus were 0.77±0.03 s⁻¹, 0.74±0.02 s⁻¹, and 0.81±0.02 s⁻¹, respectively (Fig. 1B). The relaxivity of O₂ in the brain was calculated to be 8.5×10⁻⁴ mmHg⁻¹s⁻¹ (R²=0.91) (Fig. 1C). *Discernment of pathologies:* Tumor and radiation necrosis lesions showed contrast from surrounding tissue in R₁-maps acquired during both breathing-gas conditions (Fig. 2B-C, F-G). Lesion-specific histograms showed a shift in R₁ due to breathing-gas modulation in radiation lesions and cortex from healthy animals, but not in tumor lesions (Fig. 2D,H,L). Lesion-specific changes in R₁ due to breathing-gas modulation distinguished the two pathologies (p<0.01): 0.01±0.02 s⁻¹ in tumor, 0.05±0.01 s⁻¹ in radiation necrosis lesions, and 0.07±0.01 s⁻¹ in cortex from healthy control mice. Equivalently, in units of partial pressure (mmHg): 12±24 mmHg in tumor, 59±12 mmHg in radiation necrosis lesions, and 82±12 mmHg in cortex from healthy control mice (Fig. 3).

DISCUSSION AND CONCLUSIONS: Herein, we quantify the relaxivity of brain-tissue O₂ and, subsequently, changes in brain-tissue oxygenation in healthy brain, radiation lesions, and tumor lesions. By quantifying the change in brain tissue oxygenation with MRI, we were able to differentiate tumor lesions from radiation necrosis lesions – two pathologies that have proven extremely difficult to differentiate with common radiological techniques.

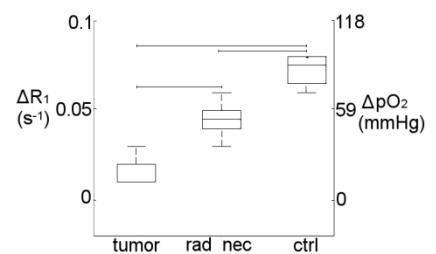

Refs: ¹O'Conner, et al. *Magn Reson Med.* (2007), ²Winter, et al. *Acad Radiol.* (2011), ³Remmeli, et al. *Magn Reson Med.* (2013), ⁴Jordan, et al. *Magn Reson Med.* (2013), ⁵Zhang, et al. *Magn Reson Med.* (2014), ⁶Kumanishi, *Jpn J Exp Med.* (1967), ⁷Jiang, et al. *Clin Cancer Res.* (2014).

Figure 1 – There is a linear relationship between pO₂ (A) and R₁ (B) measurements made during free breathing of pure O₂, 12.5% O₂/87.5% N₂, and carbogen. The relaxivity of brain tissue O₂ is 8.5×10⁻⁴ mmHg⁻¹s⁻¹ (R² = 0.91) (C).

Figure 2 – Representative T₂-weighted images (A, E, I), R₁-maps (B-C, F-G, J-K), and R₁-histograms (D, H, L) from mice with tumors, mice with radiation necrosis, and control mice during free breathing of 12.5% O₂/87.5% N₂ vs. carbogen gas. Tumor and radiation necrosis lesions are more conspicuous in R₁-maps (B-C, F-G) than T₂-weighted images. Lesion-specific histograms showed a shift in R₁ due to breathing-gas modulation in radiation lesions and cortex from healthy animals, but not in tumor lesions.

Figure 3 – Tumor lesions, radiation necrosis lesions, and healthy cortex showed small, moderate, and large changes in tissue oxygenation during breathing-gas modulation. Lesion-specific change in R₁ due to breathing-gas modulation distinguished the two pathologies (p<0.01).