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Introduction:  
Magnetic resonance imaging (MRI) provides a non-invasive window into the cerebral venous vasculature without the need for a contrast agent. MRI 
techniques that utilise phase, such as susceptibility-weighted imaging1 (SWI) and quantitative susceptibility mapping2 (QSM), provide additional 
contrast beyond standard MRI for imaging the intracranial veins. SWI is used clinically and exhibits enhanced sensitivity to smaller vessels, whereas 
QSM distinguishes between paramagnetic and diamagnetic substances. We introduce an algorithm for the segmentation of venous vasculature that 
utilises the complimentary contrast of SWI and QSM images. The algorithm is based on a combination of a Gaussian mixture model (GMM) and a 
novel Markov random field (MRF) that uses Gabor filters (GMRF) to enforce consistency to vessel like structures. 

METHODS:  
Volunteers (n=3) were scanned using a 3T Siemens Skyra with a 20-channel head and neck coil. A single echo, flow compensated, gradient-recalled 
echo (GRE) sequence was used (TE=20ms, TR=30ms, Voxel=0.9mm isotropic, Matrix=256x232x160, Flip Angle=15). SWI was obtained directly 
from the scanner (IDEA version VD13C), and k-space data saved for each coil and combined using the CSENSE algorithm3. Phase images were 
processed using HARPERELLA4 and QSM maps were computed using STI-Suite5. The first-author, under the supervision of a clinical radiologist, 
produced the ground-truth by manually marking up the venous structures using the SWI images. GMM was used to cluster the QSM and SWI for 
each voxel, i, initially conditioned on a QSM>0.05 mask. The posterior probability from the GMM step was used as input contrast to the GMRF, σ.  

The GMRF minimises the total energy based 
on a data term (Eq. 1) and a shape term (Eq. 2), 
where αi is the voxel label, αi+k and αi-k are the 
labels of the adjacent voxels along the 
orientation k, and gi,k is the response of a Gabor 
filter of orientation k on the 3x3 neighbourhood 
around voxel i. The shape term encouraged 

smoothness, over a set of orientations k, moderated by a 2D Gabor filter response of the same orientation. Exhaustive leave-one-out cross-validation 
was used to train the three parameters (Θ1, Θ2 and Θ3). Performance was assessed using DICE score and compared with an Otsu thresholded, 
vesselness filter6 applied to the SWI and QSM images separately. 
RESULTS:  
Figure 1 presents a semi-transparent render of the SWI image from an example subject, overlaid with the various 
segmentations and ground-truth. Table 1 shows the DICE scores from the GMRF validation and the vesselness filter 
for each subject. The GMRF DICE score consistently outperforms the vesselness filter on both the SWI and QSM. 
DISCUSSION:  
The combination of both contrasts, QSM and SWI, shows promising results that can partially be attributed to their 
complimentary nature. The smoothness and high surface signal-to-noise of SWI compliments the quantitative nature 
and high precision of QSM, whilst reducing some sources of error such as orientation dependence and surface noise. 
The use of GMM to combine the contrasts has inherent benefits, such as being unsupervised, and it provides a high 
contrast-to-noise dataset for the Gabor filter bank. Unlike traditional MRFs, the use of co-oriented cliques with 
Gabor filters overcomes the issue of mismatched species sizes, where the proportion of venous voxels to total brain 
voxels is quite small, whilst promoting a cylindrical structure. 
CONCLUSION:  
The GMRF method combines the voxel-based information from QSM and SWI, with local shape information, to segment the cerebral venous 
vasculature. Future work will be focused on improving the Gabor filter bank and cliques for multi-scale 3D cylindrical structures and testing it across 
a larger cohort of subjects. 
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Figure 1: Render of semi-transparent SWI image with overlaid venogram. Left-to-right: ground-truth, vesselness on SWI, and on QSM, GMRF. 

μ (σ2) 

QSM 0.27 (0.03)  
SWI 0.46 (0.02) 

GMRF 0.52 (0.02) 
Table 1: Average DICE 
score for vesselness on 
QSM, vesselness on SWI 
and GMRF. 
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