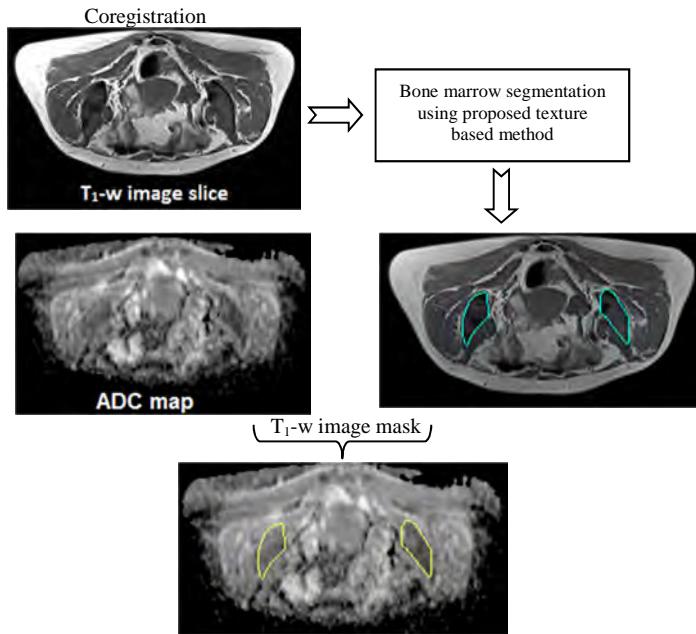


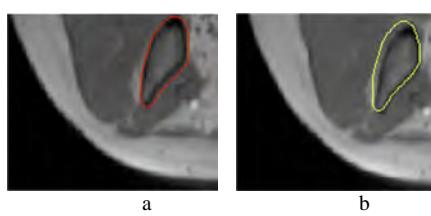
Accurate Bone Marrow Extraction from T1-w Images and ADC-maps in Patients with Metastatic Cancer: A Texture-Based Segmentation Approach

Parmida Moradi Birgani^{1,2}, Anahita Fathi Kazerooni^{1,2}, Hamidreza Haghhighatkhah³, Pedram Fadavi⁴, Mohsen Shojaei Moghaddam⁵, Meghdad Ashtiyani⁶, and Hamidreza Saligheh Rad^{1,2}

¹Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran,


²Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran, ³Department of Radiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, ⁴Radiation Oncology Department, Iran University of Medical Sciences, Tehran, Iran, ⁵Imaging Center, Payambaran Hospital, Tehran, Iran, ⁶Department of Medical Physics and Biomedical Engineering, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran

Target Audience: Oncologists, Radiologists, Physicists and Engineers Interested in Treatment of Bone Metastases


Introduction: In bone marrow metastatic cancers, accurate diagnosis of the bone state in the shortest possible time is the key to achieve therapy goals, which aims to relieve the symptoms and improves the patient's quality of life. In this light, diffusion weighted imaging (DWI) has shown great promise in providing valuable information about tissue microstructure characteristics¹⁻⁴. The calculated apparent diffusion coefficient (ADC) reflects cellular density, the tortuosity of the extracellular space, cell membrane integrity, fluid homeostasis and microcapillary perfusion⁵. The changes in water diffusivity in bone marrow through ADC-values over the course of treatment would allow for indicating the response to treatment. For extracting statistical properties of ADC-map histograms, the bone marrow should be segregated in advance. Although this segregation is of relevance in clinical study, manual region-of-interest (ROI)s selection on the ADC-maps is preferred by experts which maybe limited due to its irreproducibility, time-consuming procedure, mis-registration, the heterogeneous nature of the tumor and also the presence of cystic or necrotic areas before therapy. Here, a fully automatic scheme for segmentation of bone marrow metastatic breast cancer from T_1 -weighted (T_1 -w) images in the pelvis organ is presented. In contrary to the previously proposed work⁵, our automatic approach requires no prior information while maintaining higher accuracy in bone marrow extraction.

Materials and Methods: Data Acquisition: Whole-body T_1 -w and diffusion-weighted images of 10 breast cancer patients with bone marrow metastases under treatment, were acquired on a 1.5T MR scanner (Siemens, MAGNETOM Avanto). T_1 -weighted images were acquired with the following specifications: TR/TE = 1714/4.76 ms, matrix size = 256×151, field of view (FOV) = 430×430 mm², slice thickness = 5mm, spaces between slices = 5.5 mm. DWI was performed using a GE-EPI sequence with TR/TE= 5540/102 ms, matrix size = 256×151, FOV = 430×430 mm², slice thickness = 5mm, spaces between slices = 0.5 mm, at b-values of 50, and 900 sec/mm². ADC maps were then calculated from DW images. Image Processing and Analysis: Image processing and analysis consists of the following steps: 1) SPM8 software⁶ is employed for non-rigid registration of the whole-body T_1 -w MR images with the ADC-maps, for motion correction and image resizing, by employing normalized mutual information (NMI) as the registration objective function and Trilinear interpolation method as the deformation model; 2) in order to extract bone marrows, a texture-based segmentation method is applied on each slice of T_1 -w images; 3) creating and overlaying the bone marrow mask, created from T_1 -w segmented images, on the corresponding ADC-maps for bone marrow.

Results and Conclusions: The overall steps of bone marrow segmentation from a sample slice of T_1 -w images and its corresponding slice from the ADC-map is indicated in **Fig. 1**. As illustrated, the segmentation procedure is performed without any predefined manual ROIs. For performance evaluation of the proposed segmentation method as well as its superiority over a previously proposed method by Sanaei Nezhad *et al*⁵, both techniques were applied to the same datasets and the results were compared to manually extracted bone marrows, selected by a expert radiologist. A comparison between the methods is illustrated in **Fig. 2**. Also, **Table 1** represents a quantitative analogy between the methods using Dice score. It is apparent that our method outperforms the other technique by about 10%, and therefore could more accurately extract bone marrows from T_1 -w images and ADC maps. Moreover, unlike the Sanaei Nezhad *et al.*'s method, in our implementation no prior information is employed. Since more texture could be observed in ADC maps from image processing point of view, it seems that our proposed texture-based segmentation procedure could be applied directly on ADC-maps independent of the T_1 -w images. To conclude, the texture-based segmentation approach presented in this work could accurately and reliably be applied for automatic segmentation of T_1 -w images and ADC-maps, which could facilitate quantitative assessment of whole-body bone marrow metastasis.

Figure 1. The proposed algorithm

Figure 2. The comparison between the methods. a) Our proposed method Versus b) Sanaei Nezhad's method

Method \ Measurement	Our Proposed Method	Sanaei Nezhad's Method
Dice	0.91 ± 0.03	0.83 ± 0.06

Table 1. The mean and standard deviation of Dice measurement for Our proposed method and Sanaei Nezhad method⁶ for bone marrow extraction.

References: 1. Gaeta M. et al *Acad Radiol* 21, 1286–1293 (2014). 2. Kwee T. C. et al., *PET Clin* 5, 297–309 (2010). 3. Jacobs M. A et al., *Semin Roentgenol.* 44(2), 111–122 (2009). 4. Padhani A et al., *NEOPLASIA* 11, 102–125 (2009). 5. IEEE 11th ISBI, 1373 -1376, (2014). 6. SPM8, statistical parametrical mapping, <http://www.fil.ion.ucl.ac.uk/spm/>.