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Target Audience: Scientists and engineers interested in advanced reconstruction methods 
Background: Partial Fourier acquisition and reconstruction is a widely used method to reduce the amount of data required to form an image in MRI 
by up to 50% (1,2). Recently, a non-iterative MR image reconstruction method with integrated gradient nonlinearity (GNL) correction was proposed 
(3). The method was shown to be able to mitigate the image blurring and resolution loss introduced by conventional, image-domain interpolation 
based GNL correction, while still correcting the coarse-scale image geometrical distortion caused by GNL (3,4). In this work, we discuss the addition 
of partial Fourier acquisition to this integrated reconstruction paradigm to allow for similar maintenance of spatial resolution while reducing 
acquisition time. 
Methods: In the presence of gradient nonlinearity, the Fourier domain MR signal measurement vector, ܏, can be modeled as in the following affine 
algebraic form: ܏ ൌ ܎ሺ૎ሻ݃ܽ݅݀ۯ ൅  where f is the real-valued vector representing the image object of interest; ݀݅ܽ݃ሺ૎ሻ is a diagonal matrix with ૎ ,ܖ
denoting the spatial map of phase accumulation at each pixel (due to B0 inhomogeneity, off resonance excitation, etc.); A denotes the spatial 
encoding operator explicitly accounting for GNL induced geometrical distortion. For Cartesian MRI, the forward operator A represents a mapping 
from non-uniform image space grids (due to GNL) to a uniform k-space grid, which can be efficiently implemented via a type I non-uniform fast 
Fourier transform (NUFFT) operator. Note that without GNL, A reduces to a discrete Fourier transform (DFT) operator. The image vector f can be 
obtained by solving the following least squares estimation problem: argmin܎∈Թۼ ܏‖	 െ ܎ :ଶଶ, which has the closed-form solution as‖܎ሺ૎ሻ݃ܽ݅݀ۯ ൌ ܴ݁ሼ݀݅ܽ݃ሺ૎∗ሻሺۯ∗ۯሻି૚܏∗ۯሽ, where ۯ∗ is the adjoint operator of A. Ref. (2) shows that the ሺۯ∗ۯሻି૚ term can be approximated by the Jacobian 
determinant (diagonal matrix), ۸, of distortion mapping caused by GNL, leading to ܎ ൎ ܴ݁ሼ݀݅ܽ݃ሺ૎∗ሻ۸܏∗ۯሽ. The signal measurement vector s can 
then be symmetrically split up along phase encoding or readout direction as ܎ ൎ ܴ݁ሼ݀݅ܽ݃ሺ૎∗ሻ۸ۯ∗ሾ઴ࡸ ൅ ઴ࡴ૚ ൅઴ࡴ૛ሿ܏ሽ, where ઴ࡸ is a binary matrix 
extracting the low-pass region of k-space (along one direction), while ઴ࡴ૚,઴ࡴ૛ symmetrically extract the high-pass regions below or above the 
central low-pass region. Assuming conjugate symmetry, the image vector f can be estimated via homodyne-type reconstruction (1) via:  ܎ ൎ ܴ݁ሼ݀݅ܽ݃ሺ૎∗ሻ۸ۯ∗ሾ઴ࡸ ൅ ૛઴ࡴ૚ሿ܏ሽ.						ݍܧ	ሾ1ሿ 
To test the proposed strategy, the American College of Radiology (ACR) phantom were scanned with a 2D T1 weighted spin echo sequence (TR = 
500 ms, TE = 13 ms, matrix size = 256 × 256, axial acquisition plane, BW = േ15.63 kHz, slice thickness = 3 mm. The fully sampled k-space data 
was retained, and then retrospectively 
undersampled to 61% of its original size in 
the phase encoding direction. The phase map 
was estimated using the low-spatial 
frequency, central k-space data (i.e., ઴܏ࡸ) by ૎ ൎ expሼArgሺ۸ۯ∗઴܏ࡸሻ݅ሽ, where function Argሺ∙ሻ extracts the phase of a complex valued 
vector. Six reconstruction experiments were 
performed. First, the standard homodyne 
reconstruction was applied to undersampled 
k-space data without GNL correction, i.e., 
with ۯ∗ in Eq [2] denoting a regular inverse 
discrete Fourier transform (iDFT). Then, the 
standard GNL correction method based on 
image-domain interpolation was applied to 
the standard homodyne reconstruction (4).  
Finally, the same k-space data was directly 
reconstructed using the proposed method with ۯ∗ representing an adjoint type I NUFFT 
operator. For comparison, the same 
procedures were repeated for fully sampled k-
space data.  
Results: Figs. 1a to 1c show the images 
reconstructed from undersampled k-space data 
by: (a) standard homodyne reconstruction without GNL correction (GNLC); (b) standard homodyne reconstruction followed by standard GNL 
correction (std. GNLC); and (c) the proposed NUFFT based homodyne-type reconstruction. Figs. 1d to 1e show the images reconstructed from fully 
sampled k-space data by (d) direct reconstruction with iDFT without GNL correction; (e) applying standard GNL correction to (d); (f) applying 
NUFFT to fully sampled k-space data.  
Discussion: Comparison between the first and second row of Fig. 1 shows that the proposed NUFFT-based homodyne-type reconstruction is able to 
reduce the blurring effect and resolution loss introduced by conventional GNL correction method, which is consistent with the observation in 
reconstruction results from fully sampled k-space data.  
Conclusions: Explicitly accounting for gradient nonlinearity in the homodyne reconstruction allows for maintenance of spatial resolution while 
reducing scan time. 
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Figure 1. (a) Standard homodyne reconstruction without gradient nonlinearity correction (GNLC); (b) applying 
standard GNLC (std. GNLC) to (a); (c) the proposed NUFFT based homodyne reconstruction; (d) direct 
reconstruction on fully sampled k-space data without GNLC; (e) applying standard GNLC (std. GNLC) to (d); (f) 
applying NUFFT to fully sampled k-space data.
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