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INTRODUCTION: MR parameter mapping may offer more sensitive and specific imaging markers than conventional MRI (1). Standard parameter mapping
procedure consists of acquisition of several k-space datasets at multiple values of pulse sequence parameters (i.e., echo time in T2 mapping), followed by image series
reconstruction and subsequent voxel-wise fit by a (typically non-linear) signal model. The scan time penalty associated with parametric dimension sampling often
requires undersampling of individual k-space datasets at levels which are beyond capabilities of standard reconstruction techniques such as parallel MRI. An appealing
reconstruction strategy in such cases is to utilize k-space data and analytical signal models jointly to estimate parameter maps directly from k-space data (2) or to
improve reconstruction of the image series (3-5). In such techniques, solution is sought among the set of functions that strictly satisfy the chosen model, be it the
original nonlinear signal model (2,6) or its linearized forms (3-5). In practice, however, the model-based strategy may lead to sub-optimal performance because actual
signal may deviate from the model in many voxels (e.g., due to modeling simplifications, partial voluming, motion, etc). In this work, we propose a new model-based
reconstruction technique, whose intrinsic insensitivity to the model mismatch in such voxels results in improved reconstruction of MR parameter maps.
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level. The use of I; norm in the model-consistency term allows avoiding excessive penalization of signals deviating from the Converged ’>Yes p= S( ) No: ST,
modd. The previous efforts to solve this |; problem via linearization of the model-consistency operator P (4) introduced
significant reconstruction errors due to linearization.(7). Here, we develop a new agorithm to solve the I;-problem of Eq. [2] which alows utilization of nonlinear
models. We generate a sequence of iterates by alternating the gradient descent update of solution and a model projection operator to satisfy both data and model
consistency, respectively. This sequence is conceptually related to the projected gradients (PG) approach (8), with a projection designed to apply the MOdel-
Consistency COndition (MOCCO) (Eg. [1]) in robust (I;) fashion. The resulting algorithm (PG-MOCCO,) is shown on the right. To provide robustness to the model

mismatch, the model consistency update is performed using reweighting matrix W, designed to enforce |, behavior of the model-consistency term (Eq. [1]).
METHODS: PG-MOCCO, algorithm was compared to the model-based direct parameter mapping (DPM) method of Block et a (2), which finds p from k-space data

corresponding parametric maps (e.g., using voxel-wise model fit). If T is consistent with the signal model, condition
Pf = S(é(?))sf (Eq. [1]) should hold. In accelerated imaging, f has to be obtained from a poorly conditioned matrix

equation Ef =5, where E is the encoding matrix and S is all measured k-space data. As proposed in (4), both model
consistency and data consstency terms may be combined into a joint constrained problem:

rryn“Pf—f“l subject to |Ef -5| <& (Eq. [2]), where ||[,,, arelu/l> norms, respectively, and &is chosen according to the noise
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by solving minj HES(b) -5, Multi-spin-echo data were simulated using discrete (no partial voluming (PV)) and fuzzy (with PV) brain models from BrainWeb online

database (8) (32 echoes, 8.4 ms echo spacing, TR=1.5s). Additionally, in-vivo data were collected on a 3T clinical MRI (MR750w, GE Healthcare, Waukesha, WI)
using 8-ch array (16 echoes, 8.4 ms spacing, FOV 220x220 mm, 6-mm slice, 256x256 matrix, TR=1.5s). The data were then combined into a single coil channel using
the method of Walsh et a (9). Both simulated and in-vivo data were retrospectively undersampled using 2D variable density randomized trajectory (reduction factor
R=3.5 for 32-echo simulated data, and R=2.5 for 16-echo in-vivo data). Standard single-exponential T2 model was used in the algorithms. The normalized root-mean-
squared error (NRM SE) relative to the groundtruth images or R2=1/T2 maps was used to assess the methods’ performance.

RESULTS: Figure 1 compares the methods performances on simulated T2 data. While they are similar for discrete model, introduction of PV voxels precludes full
convergence of the global optimization in DPM. PG-MOCCO; also relies on a single-exponential model to describe signal evolution in all voxels including PV ones;
however, its robust formulation leads to smaller NRMSE. Figure 2 further demonstrates improved ability of PG-MOCCO; to handle model mismatch (Fig. 2a). In this
case, DPM reconstruction results not only in PV voxel errors but also in increased overall image error, which reduces overall quality of DPM R2 map compared to
groundtruth and PG-MOCCO; (Fig. 2b). Figure 3 demonstrates the methods' performance on in-vivo T2 datasets. Fitting the T2 decay model to fully sampled images
reveals inconsistency of the model within the vessels, especially for the slice in the right pane. While PG-MOCCO, reduces R2 error more efficiently compared to
DPM for both dlices, its robustness makes the improvements most evident in the “poor” model fit case (note different error scales for |eft and right panesin Fig. 3).

DISCUSSION: We presented a novel method (PG-MOCCO;) to reconstruct parametric maps from data sampled below the Nyquist limit. Similar to other methods for
accelerated MR parameter mapping, our algorithm utilizes nonlinear models to limit the solution space. However, PG-MOCCO; is more resilient to deficiencies in
signal representation by such models resulting in significant gains in reconstruction accuracy. This may be explained by the fact that it avoids hard constraining to the
models. Instead, it relies on I; norm in its formulation which provides robustness to outliers. Because the optimization problem is solved globally in DPM approaches,
the presence of such outliers causes incomplete convergence and decreased accuracy of parameter estimation not only in these voxels but also in other image aress.
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