
Accelerated MR Parameter Mapping Using Robust Model-Consistency Reconstruction 
Alexey Samsonov1 

1University of Wisconsin, Madison, Wisconsin, United States 
 

INTRODUCTION:  MR parameter mapping may offer more sensitive and specific imaging markers than conventional MRI (1).  Standard parameter mapping 
procedure consists of acquisition of several k-space datasets at multiple values of pulse sequence parameters (i.e., echo time in T2 mapping), followed by image series 
reconstruction and subsequent voxel-wise fit by a (typically non-linear) signal model.  The scan time penalty associated with parametric dimension sampling often 
requires undersampling of individual k-space datasets at levels which are beyond capabilities of standard reconstruction techniques such as parallel MRI.  An appealing 
reconstruction strategy in such cases is to utilize k-space data and analytical signal models jointly to estimate parameter maps directly from k-space data (2) or to 
improve reconstruction of the image series (3-5).  In such techniques, solution is sought among the set of functions that strictly satisfy the chosen model, be it the 
original nonlinear signal model (2,6) or its linearized forms (3-5).  In practice, however, the model-based strategy may lead to sub-optimal performance because actual 
signal may deviate from the model in many voxels (e.g., due to modeling simplifications, partial voluming, motion, etc).  In this work, we propose a new model-based 
reconstruction technique, whose intrinsic insensitivity to the model mismatch in such voxels results in improved reconstruction of MR parameter maps.   

THEORY:  Let [ ]1 ...
T

N=f f f  be a vector containing a parametric image series, whose dependence on model parameters p  

is described by an analytical signal model ( )= Sf p .  Let ( )= S%p f  be its adjoint operator mapping an image series to the 

corresponding parametric maps (e.g., using voxel-wise model fit).  If f  is consistent with the signal model, condition 

( )( )S S≡ ≡Pf f f%  (Eq. [1]) should hold.  In accelerated imaging, 

 

f  has to be obtained from a poorly conditioned matrix 

equation =Ef s , where E  is the encoding matrix and s  is all measured k-space data.  As proposed in (4), both model 
consistency and data consistency terms may be combined into a joint constrained problem: 
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(Eq. [2]), where 
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.  are l1/l2 norms, respectively, and ε is chosen according to the noise 

level.  The use of l1 norm in the model-consistency term allows avoiding excessive penalization of signals deviating from the 
model.  The previous efforts to solve this l1 problem via linearization of the model-consistency operator P (4) introduced 
significant reconstruction errors due to linearization.(7).  Here, we develop a new algorithm to solve the l1-problem of Eq. [2] which allows utilization of nonlinear 
models.  We generate a sequence of iterates by alternating the gradient descent update of solution and a model projection operator to satisfy both data and model 
consistency, respectively.  This sequence is conceptually related to the projected gradients (PG) approach (8), with a projection designed to apply the MOdel-
Consistency COndition (MOCCO) (Eq. [1]) in robust (l1) fashion.  The resulting algorithm (PG-MOCCO1) is shown on the right.  To provide robustness to the model 
mismatch, the model consistency update is performed using reweighting matrix 1W  designed to enforce l1 behavior of the model-consistency term (Eq. [1]).   

METHODS:  PG-MOCCO1 algorithm was compared to the model-based direct parameter mapping (DPM) method of Block et al (2), which finds p  from k-space data 

by solving ( )
2

min Sp E p - s .  Multi-spin-echo data were simulated using discrete (no partial voluming (PV)) and fuzzy (with PV) brain models from BrainWeb online 

database (8) (32 echoes, 8.4 ms echo spacing, TR=1.5s).  Additionally, in-vivo data were collected on a 3T clinical MRI (MR750w, GE Healthcare, Waukesha, WI) 
using 8-ch array (16 echoes, 8.4 ms spacing, FOV 220×220 mm, 6-mm slice, 256×256 matrix, TR=1.5s).  The data were then combined into a single coil channel using 
the method of Walsh et al (9).  Both simulated and in-vivo data were retrospectively undersampled using 2D variable density randomized trajectory (reduction factor 
R=3.5 for 32-echo simulated data, and R=2.5 for 16-echo in-vivo data).  Standard single-exponential T2 model was used in the algorithms.  The normalized root-mean-
squared error (nRMSE) relative to the groundtruth images or R2=1/T2 maps was used to assess the methods’ performance.   

RESULTS:  Figure 1 compares the methods’ performances on simulated T2 data.  While they are similar for discrete model, introduction of PV voxels precludes full 
convergence of the global optimization in DPM.  PG-MOCCO1 also relies on a single-exponential model to describe signal evolution in all voxels including PV ones; 
however, its robust formulation leads to smaller nRMSE.  Figure 2 further demonstrates improved ability of PG-MOCCO1 to handle model mismatch (Fig. 2a).  In this 
case, DPM reconstruction results not only in PV voxel errors but also in increased overall image error, which reduces overall quality of DPM R2 map compared to 
groundtruth and PG-MOCCO1 (Fig. 2b).  Figure 3 demonstrates the methods’ performance on in-vivo T2 datasets.  Fitting the T2 decay model to fully sampled images 
reveals inconsistency of the model within the vessels, especially for the slice in the right pane.  While PG-MOCCO1 reduces R2 error more efficiently compared to 
DPM for both slices, its robustness makes the improvements most evident in the “poor” model fit case (note different error scales for left and right panes in Fig. 3).   

DISCUSSION:  We presented a novel method (PG-MOCCO1) to reconstruct parametric maps from data sampled below the Nyquist limit.  Similar to other methods for 
accelerated MR parameter mapping, our algorithm utilizes nonlinear models to limit the solution space.  However, PG-MOCCO1 is more resilient to deficiencies in 
signal representation by such models resulting in significant gains in reconstruction accuracy.  This may be explained by the fact that it avoids hard constraining to the 
models.  Instead, it relies on l1 norm in its formulation which provides robustness to outliers. Because the optimization problem is solved globally in DPM approaches, 
the presence of such outliers causes incomplete convergence and decreased accuracy of parameter estimation not only in these voxels but also in other image areas.  
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Figure 2:  Results of PV model
simulations. a: True images at
several echo times and errors of
images restored by DPM and
PG-MOCCO1.  b: R2 maps from
fully sampled data and
reconstructed by DPM
(nRMSE=4.0%) and PG-
MOCCO1 (nRMSE=1.1%). 

Figure 1:  Dependence of 
DPM and PG-MOCCO1 image 
errors vs. iteration number. 
Note superior convergence of 
robust PG-MOCCO1 for PV 
model case compared to DPM. 

Figure 3:  R2 mapping 
using DPM and PG-
MOCCO1.  Slice in Left 
Pane is fit better by the 
model than slice in Right 
Pane.  Error levels are 
visually similar for “good” 
model fit (left).  Stronger 
mismatch of data and model 
for “poor” model fit case 
causes DPM to 
underperform (degradation
of cerebellum structures and 
increased image errors). 
Note that DPM error is 
spread across R2 map.   
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