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TARGET AUDIENCE: Researchers interested in fast image reconstruction and multi-contrast imaging.

PURPOSE: In applications where data from the same region of interest are acquired multiple times with different contrast settings and undersampling in k-
space, it has been demonstrated that the use of shared features results in higher reconstruction qualityl‘“. Here, we present an efficient algorithm to jointly
reconstruct a set of images with different contrasts that has faster reconstruction time and better image quality as measured by the root-mean-square error
(RMSE). To efficiently solve the £, ;-regularized optimization problem, our proposed algorithm first adopts the Split-Bregman* (SB) technique to break down
the problem into sub-problems. We efficiently compute a closed-form solution to each of the sub-problems with the help of a finite difference operator in k-
spaces. The proposed algorithm (SB-L21) offers up to 32x faster reconstruction with up to 30% reduction in an average RMSE of the reconstructed images
across all contrasts and slices, compared to other methods, including M-FOCUSS® and SparseMRI’.

METHODS: In this work, the following ¢, ;-regularized optimization problem is solved to reconstruct the data of size N, X N,, pixels with T different

contrasts: min,&ZLlllMtFxt - ytlli + /'l||GX||2’1 (Eq. 1) where X = [xq, ..., x7] € CN»*N»)XT: x is the vectorized image with a specific contrast; F is a
fully sampled 2DFT; M, is the undersampling mask for the t" image contrast; y,is the observed k-space data on a Cartesian grid; G = [G,; G, Jis a finite
difference operator; A is a regularization parameter. Extending SB formulation, we iteratively solve the following problem: minX,Z,s%Z'{zll M Fx, — ytllz +
/1||Z| |2‘1 + % | |Z - GX — S||F. For each iteration, we update X and Z by sequentially solving two sub-problems: (i) minZ%HZ - GX — S||F + Al |Z||2‘1 and
(i) ming X7_||M Fx, — yt||§ +ullz-6x- S||F. For (i), Z is updated using a soft-thresholding operator: Z™ = (Gx + $)™ o max(1 — 21/
(u ||(GX + §5)™ | |2) ,0) where Z™ is a vector of the n™ pixel values across multiple contrasts. For (ii), by rewriting the Frobenius norm as a summation of

£, vector norms, we can solve for each image contrast separately. Furthermore, the finite difference operator is implemented in k-space to arrive at the
following closed-form solution: x, = F~![(M"M + puE"E)~*(M"y, + uE"F(Z — S))] where E = [E,; E,]. Here, we express the finite difference operator
along the x-axis as G, = F"1E,F where E, is a diagonal matrix with 1 - exp(i2mk, (m, m)/N,) as its m" diagonal entry. E yis defined similarly. Finally, we
update S as follows: § =S — (Z — Gx). Experiment: In this study, we compared the performance of the proposed method to the M-FOCUSS joint
reconstruction algorithm and total variation regularized CS (SparseMRI). Dataset with 3 different contrasts and 23 slices were acquired fully sampled from a
healthy volunteer at 3T using turbo spin-echo at 0.9x0.9x3 mm’® resolution with FOV = 22cm x 22cm, TEs = 22/55/99ms, and TR = 4s. The 32-channel data

were combined and reconstructed, and the corresponding the k-space data . s
were then retrospectively, randomly undersampled along the phase In vivo 3D-TSE at 3T (slice 6)

encoding direction with an acceleration factor of two (R = 2) in MATLAB. SB-1.21 M-FOCUSS SparseMRI
Different undersampling patterns were used for different contrasts. For SB- i R=2, Joint) R=2, Separate)
L21 and SparseMRI, we selected a regularization parameter that yielded
the smallest RMSE with respect to the fully sampled data: e = 100 X
||x - xtrue” ! ||xtrue|| ,- Our stopping criterion was that the change in
RMSE between consecutive iterations is less than 1%, i.e. when 100 X
||e(k) - e(k_l)” /||e(k_1)|| < 1 where e® is RMSE at iteration k.
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RESULTS: SB-L21 took 12.9s to reconstruct the multi-slice data
compared to 5.4 min for M-FOCUSS and 6.8 min for SparseMRI. The
average RMSE across all contrasts and slices was 3.1% for SB-L.21, 3.4%
for M-FOCUSS, and 4.5% for SparseMRI. The reconstructed images from
SB-L21 have lower RMSEs (shown under each image in yellow) and
better visual quality because SB-L21 preserves the edges (green arrows in
inset figures). Inset figures (upper left corners of top-row images) are
zoomed-in views of the red box.
DISCUSSION: Fast reconstruction of SB-L21 is achieved by formulating
Eq. 1 as two sub-problems that are amenable to a closed-form solution.
Critical to this formulation is the calculation of finite differences in k-
space. Compared to SparseMRI, SB-L21 and M-FOCUSS improve
reconstruction quality because they make use of shared features among the
contrasts. Better reconstruction quality is also achieved by using different
undersampling pattern for different contrast (result not shown) because of
reduced coherence of undersampling artifacts across contrasts.
CONCLUSION: As demonstrated through in vivo results, SB-L21 takes
only 12.9s to reconstruct the 23-slice, 3-constrast data. It offers 25x faster
reconstruction with 7% reduction in RMSE and 32x faster reconstruction
with 30% reduction in RMSE with respect to M-FOCUSS and SparseMRI,
respectively. The proposed algorithm can also be a rapid alternative to the
previously proposed joint Bayesian CS', which has a very long
reconstruction time.
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