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TARGET AUDIENCE: Researchers interested in fast image reconstruction and multi-contrast imaging. 
PURPOSE: In applications where data from the same region of interest are acquired multiple times with different contrast settings and undersampling in k-
space, it has been demonstrated that the use of shared features results in higher reconstruction quality1,2,3. Here, we present an efficient algorithm to jointly 
reconstruct a set of images with different contrasts that has faster reconstruction time and better image quality as measured by the root-mean-square error 
(RMSE). To efficiently solve the ℓଶ,ଵ-regularized optimization problem, our proposed algorithm first adopts the Split-Bregman4 (SB) technique to break down 
the problem into sub-problems. We efficiently compute a closed-form solution to each of the sub-problems with the help of a finite difference operator in k-
space5. The proposed algorithm (SB-L21) offers up to 32x faster reconstruction with up to 30% reduction in an average RMSE of the reconstructed images 
across all contrasts and slices, compared to other methods, including M-FOCUSS6 and SparseMRI7. 
METHODS: In this work, the following ℓଶ,ଵ-regularized optimization problem is solved to reconstruct the data of size ௫ܰ ൈ ௬ܰ pixels with ܶ	different 

contrasts: minࢄ ଵସ∑ ห|ࡹ௧࢞ࡲ௧ െ ࢟௧|หଶଶ௧்ୀଵ ൅ ࢄ หଶ,ଵ (Eq. 1) where|ࢄࡳ|หߣ ൌ ሾ࢞ଵ,… , ்࢞ሿ ∈ ԧሺேೣൈே೤ሻൈ	்; ࢞௧ is the vectorized image with a specific contrast; ࡲ is a 

fully sampled 2DFT; ࡹ௧ is the undersampling mask for the tth image contrast; ࢟௧is the observed k-space data on a Cartesian grid; ࡳ ൌ ሾࡳ௫;ࡳ௬ሿis a finite 

difference operator; ߣ is a regularization parameter. Extending SB formulation, we iteratively solve the following problem: minࡿ,ࢆ,ࢄ ଵସ∑ ห|ࡹ௧࢞ࡲ௧ െ ࢟௧|หଶଶ௧்ୀଵ ൅ߣห|ࢆ|หଶ,ଵ ൅ ఓସ ห|ࢆ െ ࢄࡳ െ ࢆby sequentially solving two sub-problems: (i) min ࢆ and ࢄ หி. For each iteration, we update|ࡿ ఓସ ห|ࢆ െ െࢄࡳ หி|ࡿ ൅  หଶ,ଵ and|ࢆ|หߣ

(ii) minࢄ ∑ ห|ࡹ௧࢞ࡲ௧ െ ࢟௧|หଶଶ௧்ୀଵ ൅ ࢆ|หߤ െ െࢄࡳ ሺ௡ሻࢆ :is updated using a soft-thresholding operator ࢆ ,หி. For (i)|ࡿ ൌ ሺ࢞ࡳ ൅ ሻሺ௡ሻࡿ ∘ max	ሺ1 െ ߤቀ/ߣ2 ቚหሺࢄࡳ ൅  ሺ௡ሻ is a vector of the nth pixel values across multiple contrasts. For (ii), by rewriting the Frobenius norm as a summation of ℓଶ vector norms, we can solve for each image contrast separately. Furthermore, the finite difference operator is implemented in k-space to arrive at theࢆ where	,0ሻ			ሻሺ௡ሻหቚଶቁࡿ
following closed-form solution: ࢞௧ ൌ ൅ࡹுࡹଵሾሺିࡲ ு࢟௧ࡹሻିଵሺࡱுࡱߤ ൅ ࢆሺࡲுࡱߤ െ ࡱ ሻሻሿ whereࡿ ൌ ሾࡱ௫;  ௬ሿ. Here, we express the finite difference operatorࡱ
along the x-axis as ࢞ࡳ ൌ /௫ሺ݉,݉ሻ݇ߨ௫  is a diagonal matrix with 1 - exp(i2ࡱ where ࡲ௫ࡱଵିࡲ ௫ܰ) as its ݉th diagonal entry. ࡱ௬is defined similarly. Finally, we 
update ࡿ as follows: ࡿ ൌ ࡿ െ ሺࢆ െ  ሻ. Experiment: In this study, we compared the performance of the proposed method to the M-FOCUSS joint࢞ࡳ
reconstruction algorithm and total variation regularized CS (SparseMRI). Dataset with 3 different contrasts and 23 slices were acquired fully sampled from a 
healthy volunteer at 3T using turbo spin-echo at 0.9x0.9x3 mm3 resolution with FOV = 22cm x 22cm, TEs = 22/55/99ms, and TR = 4s. The 32-channel data 
were combined and reconstructed, and the corresponding the k-space data 
were then retrospectively, randomly undersampled along the phase 
encoding direction with an acceleration factor of two (R = 2) in MATLAB. 
Different undersampling patterns were used for different contrasts. For SB-
L21 and SparseMRI, we selected a regularization parameter that yielded 
the smallest RMSE with respect to the fully sampled data: ݁ ൌ 100 ൈห|࢞ െ ࢞௧௥௨௘|หଶ/ห|࢞௧௥௨௘|หଶ. Our stopping criterion was that the change in 

RMSE between consecutive iterations is less than 1%, i.e. when 100 ൈቚห݁ሺ௞ሻ െ ݁ሺ௞ିଵሻหቚଶ / ቚห݁ሺ௞ିଵሻหቚଶ ൏ 1 where ݁ሺ௞ሻ is RMSE at iteration ݇. 

RESULTS: SB-L21 took 12.9s to reconstruct the multi-slice data 
compared to 5.4 min for M-FOCUSS and 6.8 min for SparseMRI. The 
average RMSE across all contrasts and slices was 3.1% for SB-L21, 3.4% 
for M-FOCUSS, and 4.5% for SparseMRI. The reconstructed images from 
SB-L21 have lower RMSEs (shown under each image in yellow) and 
better visual quality because SB-L21 preserves the edges (green arrows in 
inset figures). Inset figures (upper left corners of top-row images) are 
zoomed-in views of the red box. 
DISCUSSION: Fast reconstruction of SB-L21 is achieved by formulating 
Eq. 1 as two sub-problems that are amenable to a closed-form solution. 
Critical to this formulation is the calculation of finite differences in k-
space. Compared to SparseMRI, SB-L21 and M-FOCUSS improve 
reconstruction quality because they make use of shared features among the 
contrasts. Better reconstruction quality is also achieved by using different 
undersampling pattern for different contrast (result not shown) because of 
reduced coherence of undersampling artifacts across contrasts. 
CONCLUSION: As demonstrated through in vivo results, SB-L21 takes 
only 12.9s to reconstruct the 23-slice, 3-constrast data. It offers 25x faster 
reconstruction with 7% reduction in RMSE and 32x faster reconstruction 
with 30% reduction in RMSE with respect to M-FOCUSS and SparseMRI, 
respectively. The proposed algorithm can also be a rapid alternative to the 
previously proposed joint Bayesian CS1, which has a very long 
reconstruction time. 
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