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Purpose: Direct parametric reconstruction (DPR)1, offers a new perspective in MR, setting the model parameters as the aim of reconstruction by estimating them 
directly from k-space using a Bayesian inference algorithm. DPR was implemented to derive model parameters from dynamic contrast enhanced (DCE) (k,t)-space 
data i.e. plasma volume vp, extracellular extravascular volume (EES) ve, transfer rate between plasma and EES (min-1) Ktrans

2.. Its performance was evaluated 
against the current “indirect” approach where (k,t)-space DCE data are reconstructed (either with a Fourier Transform or with kt-FOCUSS3 when undersampling 
was present) to images and then fitted using a pharmacokinetic (PK) model2. The purpose of this work is to address some previous limitations of the DPR 
algorithm, namely the suggested modifications are to jointly reconstruct proton density, ρ and native T1 map (T10), from the data and to account for different 
pharmacokinetic (PK) models in different tissues. 
 
DPR: In the suggested implementation ρ and T10 are initially estimated directly from multiple flip angle data, and are updated during the estimation of the PK 
parameters from both the multiple flip angles and the DCE k-space. The previous implementation1 described enhancement of all tissues using the modified Toft 
model2, which is not appropriate for certain tissues. For example the enhancement of the liver requires a dual input model (both arterial and portal input). To select 
the appropriate PK model per tissue, DPR (with less iterations) is initially run for different PK models (i.e. flow model, Toft model, modified Toft model, Liver 
model4) and a likelihood function derived per PK model. The PK model with the smallest number of parameters that provide an acceptable likelihood (above a 
certain threshold) was selected, providing a binary mask per PK model. The acceptable likelihood threshold was decided semi-automatically based on a 
comparison of the likelihood maps of the PK models and visual inspection of the PK model masks. DPR was then run using the PK model binary masks as prior 
information. 
 
Methods: Simulated abdominal DCE (k, t)-data were generated as described by1 with the difference that the enhancement in the liver is now modelled using the 
Orton4 PK model. In addition, multi-flip angle k-space data were generated at different flip angles 5o, 10o, 15 o, 20 o, 25 o, 30 o, 35o. Ground truth parametric maps 
i.e. ρ (range 0-16287), T10 (range 0-1.55 sec), vp (range 0-1), ve (range 0-1), Ktrans  (range 0-1.38 min-1) and the arterial–venous fraction γ  (range 0-0.74) of the 
Orton model are compared to the ones derived from DPR using the root mean square error (rmse). 

Results: Figure 1 describes the current implementation of 
DPR. The results shown are for fully sampled k-space. 
Initially DPR runs for the multi-flip angle k-space data, to 
derive ρ and T10. The correspondence of ρ and T10 to their 
ground truth values is rmse= 140 and 0.12 respectively. The 
algorithm is then run to create a binary mask for each PK 
model, the percentage of correct assignments is 96% for the 
“flow” model, 60% for the Toft model, 98% for the Orton 
and 83% for the modified Toft model. The derived binary 
masks are subsequently used as prior information in DPR to 
jointly reconstruct ρ, T10, vp, ve, Ktrans and γ from both the 
multi flip angle and DCE k-space data. The respective rmse 
were 115.6, 0.10, 0.02, 0.37, 0.07, and 0.02. Note that the 
joint estimation of all model parameters improved the 
correspondence of ρ, T10 to their ground truth values by 
18% and 16% respectively. 
 
Limitations: The proposed implementation of DPR has not 
been evaluated on undersampled data or when motion is 
present. Both motion and undersampling could affect our 
ability to accurately assign each pixel to the appropriate PK 
model. Further the enhancement in the heart has been 
simulated by just using plasma volume. Future work on the 
selection of undersampling pattern, low-rank/sparsity priors, 
motion compensation and the automatic selection of PK 
models could be undertaken.  
 
Conclusions: DPR as initially suggested by1 has shown 
promising results especially for high undersampling but had 
limitations, some of which we tried to address in this work. 
The current implementation suggests a joint reconstruction 
of all model parameters related to DCE, and has the ability 
to select the appropriate PK model for each pixel. The model 
selection is a non-trivial step as we simultaneously need to 
avoid over-fitting (by using more model parameters than 
needed) and accurately describe the kinetics. DPR might 
easily be applied to Diffusion Weighted MR, where due to 
the presence of noise especially at high b-values we expect 
DPR to outperform current techniques. 
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Figure1: Diagram of the different steps for  the proposed implementation of DPR. 
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