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Purpose: Many pharmacokinetic models used in DCE-MRI require a subject-based (@) k‘SF’a data
aortic input function (AIF) typically obtained from the reconstructed MR images that are =
used for diagnosis. Accurate measurement of AIF may require at least 1s temporal
resolution', which would compromise image spatial resolution. A recently developed
low-rank reconstruction method based on the variable density view ordering and
sampling (VDRad) strategy® allows data to be reconstructed at different temporal s -1
resolutions but at the cost of increased reconstruction times. Here, we present a faster At each time point split k-space data into 2 parts.
method for extracting high temporal resolution (HTR) AIFs from DCE-MRI data and b
compare it to the low-rank reconstruction method.

Methods: DCE-MRI datasets were acquired using the VDRad method, which is a 3D
Cartesian sampling strategy that samples the central k-space with increased density and =
frequency. The clinical images were reconstructed using a low-rank reconstruction
method to achieve diagnostic image quality3. The high temporal resolution AIFs (HTR- = 2 . =)
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AIFs) were reconstructed using the method outlined in Fig 1. First the data was binned © &l Reconstruction &\l,
into smaller temporal frames (Fig la), to provide even better temporal resolution.
However, the resulting k-space has a densely sampled central region and a sparsely
sampled outer region. This causes image blurring similar to only sampling the central k-
space. Blurring in the image domain also distorts the measured AIF by “mixing” it with
the surrounding tissue signal. In order to correct this distortion, the k-space was split into
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2 complementary regions (Fig 1b). Images were reconstructed for each region calculate signal change (AS)

individually (Fig 1c) aI}d the average signal .w1th.1n the aortic ROI was calculated. Here, (d) (€)4TR = o LP + (1-c).HP
the low pass (LP) region causes constructive interference between the aorta and the HP Linear-fit to

surrounding tissue, and the high pass (HP) region causes destructive interference, just ., the tail section

like an edge detector kernel. The signals were normalized to compensate for the sampling < vy L/J N \ T
pattern differences. The signals were scaled after removing the baseline to match the start T 5:::2212(12?;1;0;; view
and end points (Fig 1d). The LP and HP signals were mixed with a proportionality

constant o to get the final HTR-AIF estimate (Fig le). Since the tail of the AIF changes Time 5 ime

slowly, measurements in this section are not affected by large temporal footprint. We Combine signals from HP and LP images. Choose a to
used a low temporal resolution view-shared reconstruction to get a reference signal (i.e. ™Match the slope of the tail section of the reference signal.
ground truth) for the tail section and used it to find the correct proportionality constant . Fig. 1. HTR-AIF method outline.

Experiments: Pediatric subjects were scanned on a GE 3T scanner using a 32-channel
torso coil. VDRad parameters: 15° flip angle, £100kHz bandwidth, TR = 3.3ms, matrix =
192x180, FOV = 320x256 mm, slice thickness = 2.4 mm, 80 slices, and 6.2x
acceleration. Injection protocol: single dose contrast diluted to 10ml was power injected
at a rate of 1ml/s. The dataset was reconstructed using both the HTR-AIF method and the
low-rank method at temporal resolutions of 1.25s, 3s, and 6s. The reconstructions were
performed and timed on a 2.6GHz 8-core machine. The HTR-AIF method was also @]
validated using digital phantom simulations as described previously®. / —HTR_6e
Results/Discussion: Low-rank reconstruction results at different temporal resolutions are
shown in Fig 2. As the temporal resolution improves, the spatial resolution decreases and
images get blurry. The signal change curves calculated from the reconstructed images are
shown in Fig 3 along with the HTR-AIF estimates at the same temporal resolution. As the
temporal resolution increases, the two signals start to differ in peak height but the overall
shape looks similar. At 6s temporal resolution the AIF has only 1 main peak. However at
3s and 1.25s temporal resolutions the peak of the second pass also becomes visible, as
expected for fast contrast injection rates. For ¢ 1T
quantitative analysis, 3s resolution is a ! HTR-AIF.
reasonable choice considering that there is
not much difference between 3s and 1.25s
curves. Generating 6s, 3s, and 1.25s AIF
curves with low-rank took 30min, lhr and
2.5hr respectively. The HTR-AIF estimates
for the same temporal resolutions took
1.5min, 2.5min, and 5min. The HTR-AIF
method validation results are shown in Fig  Fig. 4. Simulation results: 1.5s HTR-AIF (red) ~ Fig- 3- HTR-AIF estimates (red) compared to AIF

4. HTR-AIF method overestimated the peak  vs. ground truth (black) estimates from low-rank images (blue) at (a) 6s,
value by 1.6%. (b) 3s, and (c) 1.25s temporal resolutions.
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Fig. 2. Images reconstructed by low-rank method.
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Conclusion: We have presented a fast method for computing high temporal resolution AIFs and demonstrated its feasibility on pediatric subjects.
The method was similar in signal quality to low rank reconstruction but was 25 times faster.
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