
IMPROVED MOTION COMPENSATED RECONSTRUCTION FOR 3D ABDOMINAL MRI USING A SELF-NAVIGATED NON-RIGID MOTION MODEL

Gastao Cruz¹, David Atkinson², Tobias Schaeffter¹, and Claudia Prieto¹

¹Division of Imaging Sciences & Biomedical Engineering, King's College London, London, London, United Kingdom, ²Centre for Medical Imaging, University College London, London, United Kingdom

INTRODUCTION: Respiratory motion remains a major challenge in 3D abdominal MRI, introducing ghosting and blurring. Respiratory gating can reduce these artifacts, but leads to long scan time due to low scan efficiency. Alternatively, non-rigid abdominal motion may be estimated from undersampled respiratory resolved images and corrected during reconstruction¹. This approach, so-called TV-GMD inter-bin, groups free-breathing data into respiratory positions (bins), obtains a non-rigid motion model via registration and corrects for the estimated inter-bin motion during the reconstruction (Fig1a). However, intra-bin motion is unaccounted for resulting in (potentially considerable) residual motion artifacts, particularly in end-inspiration where large bin windows are required to ensure enough data for reconstruction. Moreover, motion estimation accuracy is limited in poorly populated regions of the respiratory cycle (typically end-inspiration or due to drifts in the breathing pattern) and some data may be discarded. Here, we propose an intra-bin motion correction approach to further improve the accuracy of TV-GMD inter-bin. This approach is based on the assumption of a linear relation between the non-rigid motion of each acquired data within the bin and the inter-bin non-rigid motion model. The proposed TV-GMD intra-bin correction (Fig1.b) is compared with the inter-bin motion correction approach and the conventional gated reconstructions, showing significantly improved sharpness and image quality in 3 healthy volunteers.

METHODS: Data is acquired using a self-navigated GRPE (golden radial phase encoding) trajectory², allowing data to be grouped into different respiratory bins (Fig.1a). These undersampled bins are reconstructed with total variation (TV) regularized iterative SENSE³ and registered⁴ to estimate inter-bin motion (U_b). We propose that intra-bin motion at the respiratory position $p(U_p)$ may be obtain by scaling the non-rigid inter-bin motion fields: $U_p = β_p U_{b_l}$ (Fig1.b). Here, we use the respiratory signal to determine the scaling factor $β_p$ according to the relative distance between acquired data n

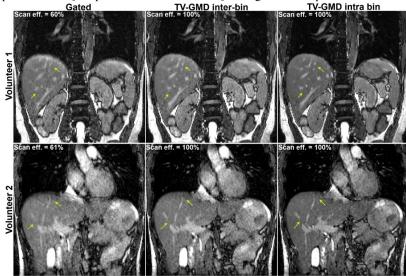


Fig.1: a) Acquired data is grouped into respiratory bins, non-rigid motion is estimated between them (U_b) and this inter-bin motion is corrected with TV-GMD. **b)** Schematic of intra-bin correction for Bin 3: intra-bin non-rigid motion (U_p) at arbitrary respiratory positions can be obtained by scaling the estimated U_b with β_p and corrected with TV-GMD.

according to the relative distance between acquired data p and its corresponding bin: $\beta_p = (\Delta p - \Delta b)/\Delta b$, where Δb is the distance between the mean positions of bin i (\bar{b}_i) and end-exhale bin (\bar{b}_{ex}), Δp is the distance between \bar{b}_{ex} and p. Thus, a motion model U_p with higher temporal sampling than U_b is obtained per acquired data point (intra-bin). In particular, this model U_p provides accurate motion estimation in the extreme points of the respiratory cycle, which was previously unavailable. Finally, the estimated intra-bin motion U_p is incorporated into a TV regularized general matrix description⁵ reconstruction (TV-GMD), correcting 3D non-rigid abdominal motion directly in the reconstruction of the complete dataset. This is done by solving $\hat{I} = arg \min_I \{||EI - K||_2^2 + \lambda_s TV_s\}$, where E is the generalized encoding matrix (includes the Fourier operator, coil sensitivities, the sampling operator and the intra-bin motion fields U_p), I is the ideal image, K the acquired data, TV_s is spatial total variation and λ_s the regularization parameter.

EXPERIMENTS: So far three healthy volunteers were scanned free-breathing on a 1.5T Philips scanner using a 32 channel coil (b-SSFP, FOV = 287mm isotropic, resolution = 1.75mm isotropic, TR/TE = 3.0/1.4ms, flip angle = 30° , radial undersampling = 2). Three reconstructions were performed from the same acquired data: a 5mm gated reconstruction, inter-bin TV-GMD and the proposed intra-bin TV-GMD. Methods were compared using measures of vessel sharpness (VS), liver sharpness (LS) and visual image evaluation of ghosting and blurring on a scale of 1 (severe ghosting/blurring) to 4 (no ghosting/blurring) by 4 experts.

RESULTS: Reconstruction results for respiratory gated, TV-GMD inter-bin and the proposed TV-GMD intra-bin are shown in Fig.2. The respective measures (normalized to the gated) obtained were: VS = 1.00 ± 0.17 , 1.12 ± 0.18 and 1.28 ± 0.19 ; LS = 1.00 ± 0.08 , 1.37 ± 0.09 and 1.65 ± 0.08 ; visual evaluation = 1.17 ± 0.33 , 2.60 ± 0.47 and 3.56 ± 0.40 . Both TV-GMD approaches had a scan efficiency of $100\pm0\%$, whereas the gated had $64\pm5\%$.

Fig.2: Coronal slices of 3D volumes of a 5mm gated reconstruction, TV-GMD inter-bin and the proposed TV-GMD intra-bin for volunteer 1 (**top row**) and volunteer 2 (**bottom row**).

CONCLUSION: We have proposed a simple intra-bin motion model to further improve image quality of abdominal motion corrected reconstruction. Comparison between the proposed TV-GMD intra-bin and TV-GMD inter-bin shows a significant improvement of ~14% in VS, ~20% in LS and ~37% in visual evaluation of ghosting/blurring. Further work will focus on improving motion estimation in undersampled datasets and validating the proposed model in additional subjects.

REFERENCES: [1] Cruz et al, ISMRM 2013; [2] Prieto et al, MRM 2010; [3] Lustig et al, MRM 2007; [4] Buerger et al, MedIA 2011; [5] Batchelor et al, MRM 2005.