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Target Audience: MR researchers and clinical scientists working with dynamic MRI studies (DCE, Diffusion MRI, fMRI, etc.)

Introduction: Accurate and efficient motion estimation is critical in MRI studies to achieve better anatomical resolution and faithful
physiological analysis [1-4]. However, existing quantitative motion estimation/correction (ME/MC) methods require additional hardware or
additional time cost of navigator or intensive registration. Here we propose a new method that accurately estimates motion using the
motion-induced changes in noise correlation existing in all multi-channel MRI signals. This approach enables real-time and post-scan motion
estimation without modifying acquisition or adding equipment, complements other ME/MC methods and is contrast-independent.

Theory: Motions induce changes in the noise correlations between RF coil arrays (shown in Fig.1). Intrinsic noise [5] is the noise voltage
originating from eddy currents induced in the sample and is the dominant source of the noise correlation between signals from RF coil arrays. It
can be formulated as in Eq.1 and the intrinsic correlation coefficient is largely related to the sensitivity function S depends on position of RF
receiver and samples. We make uses of the motion-induced changes in intrinsic noise correlation in multi-channel MRI signals as an intrinsic

navigagﬂrﬂf motion. Here the motion model is simplified as rigid motion in the method but further extension was also discussed.
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signals. Noise correlations between raw k-space noise from
multi-channel MR signals were estimated using Person’s
correlation coefficient p(x,y) = cov(x,y)//var(x)var(y).
For image domain extraction, reconstruction was conducted
using the signal in certain time window and the correlation
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coefficient of background signals (extracted by threshold)
from different channels was computed.

2) An encoding model was used to estimate motion from
the noise correlation matrix. The noise correlation
information has much higher dimension than the motion parameters
(translation T and rotation R) for which conventional methods may fail. In our
method, firstly, for each channel pair, we trained a model p;; = f;;(T,R)
encoding the correlation coefficient with motion information. A 2™-order
model was fitted which is consistent with the physical formula of the intrinsic
noise correlation. Secondly, given any correlation coefficient value and
motion parameters we can estimate the likelihood Lfi’]. (pi, j|T,R) based on
the trained model. Thirdly, an optimization strategy was used to search the
optimal translation and rotation parameters that maximize the sum likelihood
among all channel pairs. The optimal translation and rotation is the final
output of the estimated rigid parameters.
(Topes Rope) = argmax ¥, ; Lf“-(pi,j|T, R).

Experiments: The method was evaluated on both 3T MR750 and 7T MR950
GE Whole Body MRI scanners with 32-channel head coil on a healthy
volunteer. MP-RAGE sequence (TE/TR/TI/Readout=3.2/2500/1100/1000ms,
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Motion Estimation Performance for Different Settings

TEMPORAL ESTIMATION
DATA/NOISE SAMPLING RESOLUTION ACCURACY
SOURCE ACCERATION

Sample Time(ms) Trans.(mm) Rot.(°)
3T, raw - 1000 20.7 1.09 9.8
3T, image full 50 10.3 4.10 3.7
3T, image R=4 500 103.3 3.06 4.3
7T, raw - 1000 20.7 1.51 9.4
7T, image R=4 500 103.3 1.02 1.9

Table 1. The estimation accuracy and effective temporal resolutions:
Millimeter level translation and degree level rotation accuracy is
achieved. The method utilizes the noise correlation from either raw
noise acquisition or extraction from reconstructed image. Further
acceleration can improve the effective temporal resolution.
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0=18°, 30 slices, FOV=192mmx192mm, matrix size=256x256, slice

thickness=0.8mm) was adopted to acquire full k-space data at 7 different head positions (two poses shown in Figure 2). The datasets were fully
sampled and retrospectively under-sampled offline to simulate the effect in accelerated acquisition with ESPIRIT reconstruction [6].

Noise Data: Here we evaluated and compared the method from both raw noise and extracted image domain noise. For each position, we
collected raw noise samples from a pure noise scan without encoding and with zero flip angle. We also reconstructed the T1w brain scan and
extract the background samples as noise with a threshold (outside image support and within 10% of maximum intensity).

Results: Prospective image registration results based on T1w brain scans were used as a ground truth estimation of motion. We quantified the
accuracy of the proposed method using Root-Mean-Square-Error (RMSE) of motion parameters. Multiple settings were compared: 1) using
noise extracted from k-space or image domain, 2) whether to use acceleration which improved temporal resolution of the estimation for image
domain method 3) how many samples to use for each estimation which effect both the equivalent temporal resolution and accuracy. Shown in
the table below, the proposed algorithm achieves 1mm accuracy in translation and about 2~3 degree accuracy in rotation while with temporal
resolution (equivalent time cost for each estimation computed based on read-out time cost) is 20~100 milliseconds.

Discussion: The proposed method does not require further acquisition, hardware and is not affected by contrast changes. The change of
correlation coefficient has clear physical meaning (Fig.1). This approach is applicable for both on-line and off-line ME/MC and compliments
other navigators and motion estimation methods. Non-rigid motions can be estimated with further modeling.

References: [1] Jenkinson 2002 [2] Zaitsev 2006 [3] Kober 2011 [4] Cheng 2012 [5] Constantinides 1997 [6] Uecker 2013

3671.



