
Fast Non-Cartesian Reconstruction with Pruned Fast Fourier Transform 
Frank Ong1, Martin Uecker1, Wenwen Jiang2, and Michael Lustig1 

1Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California, United States, 2Bioengineering, UC Berkeley/UCSF, Berkeley, 
California, United States 

 
TARGET AUDIENCES:    Those interested in fast non-
Cartesian reconstruction.  

PURPOSE:   Non-Cartesian imaging is essential in 
applications such as ultra-short time-echo imaging and real-
time cardiac imaging. However, reconstruction speed 
becomes a limitation when iterative reconstruction is desired 
for parallel imaging, compressed sensing or artifact 
correction. In this work, we propose using pruned Fast 
Fourier Transform (pruned FFT) to accelerate almost all fast 
non-Cartesian reconstruction methods (gridding, toeplitz-
circulant embedding, iterative, non-iterative). For iterative 
methods, we also propose partial pruning to approximate the 
non-Cartesian Fourier Transform operator to speed up each 
iteration while guaranteeing convergence. 

THEORY:   To illustrate the concept of pruned FFT, we 
use the non-uniform FFT adjoint operation (NUFFT adjoint, 
Figure 1) as an example. Conventional NUFFT adjoint 
consists of an oversampled FFT followed by cropping, 
which requires ~2-8x more memory usage than the usual 
FFT. Instead of oversample then crop, pruned FFT simply 
prunes the computations on the cropped region, thus 
eliminating the need to initialize oversampled memory in 
the first place. Figure 2 shows an FFT butterfly flow 
diagram for 1D pruned FFT, illustrating how pruned FFT 
leverages the FFT butterfly structure to reduce memory and 
computation. Figure 3 demonstrates how pruned FFT works 
within NUFFT adjoint: instead of gridding on a 2x-
oversampled grid and perform a 2N×2N IFFT, we can grid 
the kspace data on four shifted N×N grid, compute N×N 
FFTs and then compensate for the linear phase respectively. 

Thus, using pruned FFT, no memory overhead is required 
when each shifted FFT is processed serially, regardless of 
the oversampling factor. Alternatively, significant speedup 
can be gained when each shifted FFT is parallelized. The 
pruned version is exactly equivalent to the original 
operation and can be applied to NUFFT forward, adjoint 
and toeplitz-circulant embedding. 

To further accelerate iterative methods, we propose partial 
pruning. In each iteration, we randomly update only one 
shifted FFT for each coil. Random ghosting artifacts appear 
but are averaged over coils and iterations. When combined with gradient methods, partial pruning is guaranteed to converge in 
expectation as an instance of stochastic gradient method2. Since per-iteration speed is faster, operations other than Fourier transform 
can be done more frequently and overall convergence can be faster. Figure 4 illustrates adjoint NUFFT with partial pruning. 

RESULTS AND DISCUSSIONS:  Figure 5 shows the reconstruction speed comparison of L1-ESPIRiT3 of a 128×128 test image 
with 200 iterations, 2x oversampled gridding and toeplitz-circulant embedding with and without (full) pruning. As shown, pruned FFT 
accelerates each method by ~1.3x. Figure 6 shows the reconstruction results with partial pruning and full pruning after 30 seconds 
with toeplitz-circulant embedding on a 292×264×74 sized brain dataset. Partial pruning was able to complete 10 iterations while full 
pruning was only able complete 3 iterations, thus more artifacts remain. 

CONCLUSIONS: The proposed pruned FFT reduces computation time and memory overhead for both iterative and non-iterative 
methods. Partial pruning further accelerates iterative methods. The code is available online under BART.4 

REFERENCES: [1] Markel, et al. IEEE Trans on Audio and Electroacoustics 1971;19:305-11. [2] Bertsekas, et al. Parallel and distributed computation 1989. [3] 
Uecker, et al. MRM 2014; 71: 990-1001 [4] BART. (2014) doi: 10.5281/zenodo.12495 https://www.eecs.berkeley.edu/~mlustig/Software.html 

Proc. Intl. Soc. Mag. Reson. Med. 23 (2015)    3639.


