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TARGET AUDIENCE: Imaging scientists and clinicians interested in stability and accuracy of parallel imaging reconstruction.

PURPOSE: The stable and accurate reconstruction of images from under- Increasing Random Noise >
sampled data using parallel imaging often requires prior information and/or
regularization [1-4]. Regularization of PI based reconstructions can have a
significant impact on signal-to-noise and artifact levels, and many attempts have
been made to automatically determine the correct balance between image
stability and data consistency/low artifact levels [5-7]. We introduce effective
rank as a proxy for automated PI regularization. Unlike condition number,
effective rank correlates with the number of dominate basis vectors that Random Noise Regularization Tikhonov Regularization
contribute to the image reconstruction. A Line-search can be used to sweep " 5§

regularization levels to determine the appropriate regularization parameter to
meet the desired effective rank. The proposed strategy should be applicable to a
wide range of PI reconstruction algorithms and scanner hardware. We
demonstrate the benefits of our approach for GRAPPA reconstructions of EPI
data with two classes of regularization using 32ch and 52ch head array coils.
METHOD: GRAPPA reconstruction uses nearest-neighbor k-space weightings LD I 00002 0004 0006 0008
across coil channels in order to estimate missing k-space samples from  [EEEENEN Rl T e N e
accelerated Cartesian acquisitions. These k-space relationships can be formulated
as an over-determined system of linear equations, which can be written compactly

Mean SNR
Mean SNR
& oo
N

0.01

sing random noise or Tikhonov regularization. (bot) Mean SNR
increase with increased regularization, plotted for two image slices.

as: AN = B. During the GRAPPA kernel training phase, A and B are known Random Noise Regularization Tikhonov Regularization
(supplied by the AutoCalibration Signal or ACS data) and we solve for N 32ch . 52ch 32ch 52ch
through a least-squares formulation. As new accelerated data arrives, it is
assembled into new undersampled matrix A and the kernels N are applied to
calculate the missing samples contained within the resulting matrix B. The
stability of the training matrix A, and the related stability of the kernels N, are % = g .8 = ™ = & .8 © % o o om o o % oo oo oo oo o
both critically important to the performance of GRAPPA reconstruction. A

simple metric for stability would be the condition number of the kernel matrix.
Here, the singular value decomposition could be used to factor N = UsvH,
where the singular values are in descending order S = diag{omax, --» Omin}-
Regularization is added until a desired condition number ¥ = Gyax/Gmin 1S
reached. However, condition number only describes the worst-case error
propagation and this metric does not correlate well with image SNR and artifact
levels; see Figs. 1 and 2. Alternative approaches simulate data to test image
reconstruction accuracy/stability in order to arrive at a maximum likelihood
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regularization estimate. In this work, we avoid costly simulations and define a [N CUREEMINERCLISTYERIS LIRS €1 AN 28 G0 T
rank proxy to determine appropriate levels of regularization. First, a relative  [EUESeRGONEIGHEN RSO0 SRV AT M RN G 0|
threshold cut-off on the singular value decay is defined from the non-regularized — SUiEHHOIBITEE SR GG RIOGEE Ui bR VARG SR HISIN S
kernels: €qunk = (Omedian — Omin)/ (Omax — Omin) - Given a regularization — [ElESEES SRRl B PRI B e G B R R T L IR
level, the number singular values that satisfy 6; > € -yniOmax determines the effective rank. If only small changes in the effective rank are observed
as the regularization level is increased, there will be diminishing benefits to further regularization and this can lead to increased image artifact levels.
RESULTS: The application of the effective rank proxy was demonstrated with a spherical phantom on a 3 T Siemens Skyra scanner using both
Siemens 32ch and 52ch head array coils. There were 32 single-shot gradient-echo EPI slices acquired at 2 mm isotropic resolution with matrix size of
96x96, TE=30 ms, TR=2 s, flip angle 90°, and in-plane acceleration factor of 4 with 88 autocalibration lines. We consider both the standard
Tikhonov regularization with new normal equation matrix (AH A+ x* mean(tr(AH A)) * ] ) and Gaussian noise regularization which instead adds a
random matrix. Fig. 1 shows SNR maps of the 52ch reconstructions across 7 different regularization settings; the corresponding values are indicated
on the Mean SNR plots (Fig. 1 bot). Fig. 2. shows the effective rank trends for both regularization approaches and coils. In addition, the condition
number trend for the associated GRAPPA kernels is shown below. Finally, the clear plateau observed in each effective rank trend can be used to
choose a regularization level that may be used to balance the SNR and artifact level (circled locations); the corresponding SNR maps are provided.
DISCUSSION: Effective rank can be used as a proxy to successfully balance SNR and artifact levels for automated regularization of PI
reconstruction. As can be seen from Fig. 2 effective rank accurately predicts the transition point from improved SNR to over-regularization/increased
artifacts (no such transition is observable with the condition number). This distinct transition point in the erank trend can be used as a reference point
to allow for image reconstructions favoring either increased SNR or decreased artifact level. The method avoids costly simulations and only requires
evaluation of the singular value decay rates at progressively higher regularization rates. For standard kernel sizes and array coils, direct SVD methods
will allow for efficient regularization parameter estimation. In the case of higher acceleration factors and large array coils, matrix compression

techniques [8] can allow for efficient approximation of the effective rank through divide-and-conquer based eigenvalue techniques [9].
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