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TARGET AUDIENCE: Imaging scientists and clinicians interested in stability and accuracy of parallel imaging reconstruction. 
PURPOSE: The stable and accurate reconstruction of images from under-
sampled data using parallel imaging often requires prior information and/or 
regularization [1-4]. Regularization of PI based reconstructions can have a 
significant impact on signal-to-noise and artifact levels, and many attempts have 
been made to automatically determine the correct balance between image 
stability and data consistency/low artifact levels [5-7]. We introduce effective 
rank as a proxy for automated PI regularization. Unlike condition number, 
effective rank correlates with the number of dominate basis vectors that 
contribute to the image reconstruction. A Line-search can be used to sweep 
regularization levels to determine the appropriate regularization parameter to 
meet the desired effective rank. The proposed strategy should be applicable to a 
wide range of PI reconstruction algorithms and scanner hardware. We 
demonstrate the benefits of our approach for GRAPPA reconstructions of EPI 
data with two classes of regularization using 32ch and 52ch head array coils.  
METHOD: GRAPPA reconstruction uses nearest-neighbor k-space weightings 
across coil channels in order to estimate missing k-space samples from 
accelerated Cartesian acquisitions. These k-space relationships can be formulated 
as an over-determined system of linear equations, which can be written compactly 

as: ܰܣ ൌ ܤ . During the GRAPPA kernel training phase, ܣ  and ܤ  are known 
(supplied by the AutoCalibration Signal or ACS data) and we solve for ܰ 
through a least-squares formulation. As new accelerated data arrives, it is 
assembled into new undersampled matrix ܣሚ  and the kernels ܰ  are applied to 
calculate the missing samples contained within the resulting matrix ܤ෨ . The 
stability of the training matrix ܣ, and the related stability of the kernels ܰ, are 
both critically important to the performance of GRAPPA reconstruction. A 
simple metric for stability would be the condition number of the kernel matrix. 
Here, the singular value decomposition could be used to factor ܰ ൌ ܷܸܵு , 
where the singular values are in descending order ܵ ൌ ݀݅ܽ݃ሼߪ௠௔௫,… , ௠௜௡ሽߪ . 
Regularization is added until a desired condition number ̃ߢ ൌ ෤௠௜௡ߪ/෤௠௔௫ߪ  is 
reached. However, condition number only describes the worst-case error 
propagation and this metric does not correlate well with image SNR and artifact 
levels; see Figs. 1 and 2. Alternative approaches simulate data to test image 
reconstruction accuracy/stability in order to arrive at a maximum likelihood 

regularization estimate. In this work, we avoid costly simulations and define a 
rank proxy to determine appropriate levels of regularization. First, a relative 
threshold cut-off on the singular value decay is defined from the non-regularized 
kernels: ݁௧௥௨௡௞ ൌ ሺߪ௠௘ௗ௜௔௡ െ ௠௔௫ߪ௠௜௡ሻ/ሺߪ െ ௠௜௡ሻߪ . Given a regularization 
level, the number singular values that satisfy ߪ෤௜ ൐ ݁௧௥௨௡௞ߪ෤௠௔௫ determines the effective rank. If only small changes in the effective rank are observed 
as the regularization level is increased, there will be diminishing benefits to further regularization and this can lead to increased image artifact levels.  
RESULTS: The application of the effective rank proxy was demonstrated with a spherical phantom on a 3 T Siemens Skyra scanner using both 
Siemens 32ch and 52ch head array coils. There were 32 single-shot gradient-echo EPI slices acquired at 2 mm isotropic resolution with matrix size of 
96×96, TE=30 ms, TR=2 s, flip angle 90°, and in-plane acceleration factor of 4 with 88 autocalibration lines. We consider both the standard 
Tikhonov regularization with new normal equation matrix ൫ܣுܣ ൅ ߯ ∗ ݉݁ܽ݊൫ݎݐሺܣுܣሻ൯ ∗  ൯ and Gaussian noise regularization which instead adds aܫ
random matrix. Fig. 1 shows SNR maps of the 52ch reconstructions across 7 different regularization settings; the corresponding values are indicated 
on the Mean SNR plots (Fig. 1 bot). Fig. 2. shows the effective rank trends for both regularization approaches and coils. In addition, the condition 
number trend for the associated GRAPPA kernels is shown below. Finally, the clear plateau observed in each effective rank trend can be used to 
choose a regularization level that may be used to balance the SNR and artifact level (circled locations); the corresponding SNR maps are provided. 
DISCUSSION: Effective rank can be used as a proxy to successfully balance SNR and artifact levels for automated regularization of PI 
reconstruction. As can be seen from Fig. 2 effective rank accurately predicts the transition point from improved SNR to over-regularization/increased 
artifacts (no such transition is observable with the condition number). This distinct transition point in the erank trend can be used as a reference point 
to allow for image reconstructions favoring either increased SNR or decreased artifact level. The method avoids costly simulations and only requires 
evaluation of the singular value decay rates at progressively higher regularization rates. For standard kernel sizes and array coils, direct SVD methods 
will allow for efficient regularization parameter estimation. In the case of higher acceleration factors and large array coils, matrix compression 
techniques [8] can allow for efficient approximation of the effective rank through divide-and-conquer based eigenvalue techniques [9].  
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Fig. 1. (top) Image SNR maps for a 52ch GRAPPA reconstruction 
using random noise or Tikhonov regularization. (bot) Mean SNR 
increase with increased regularization, plotted for two image slices. 

Fig. 2. (top) Effective rank for 32ch and 52ch GRAPPA reconstructions 
using random noise Tikhonov regularization for two slices. (mid) Kernel 
condition numbers are shown across regularization levels. (bot) SNR 
maps corresponding to regularization picked from effective rank trends. 

Proc. Intl. Soc. Mag. Reson. Med. 23 (2015)    3619.


