

Cerebral Metabolite Differences and Correlations in Short-Term Binge Ethanol-Exposed Rats: A Study of Ex Vivo Proton Nuclear Magnetic Resonance Spectroscopy at 11.7-T

Do-Wan Lee^{1,2} and Bo-Young Choe¹

¹Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul, Seoul, Korea,
²Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea

Target audience: Neurologists, psychiatrists, and clinicians interested in using magnetic resonance spectroscopy (MRS) to investigate brain disorders.

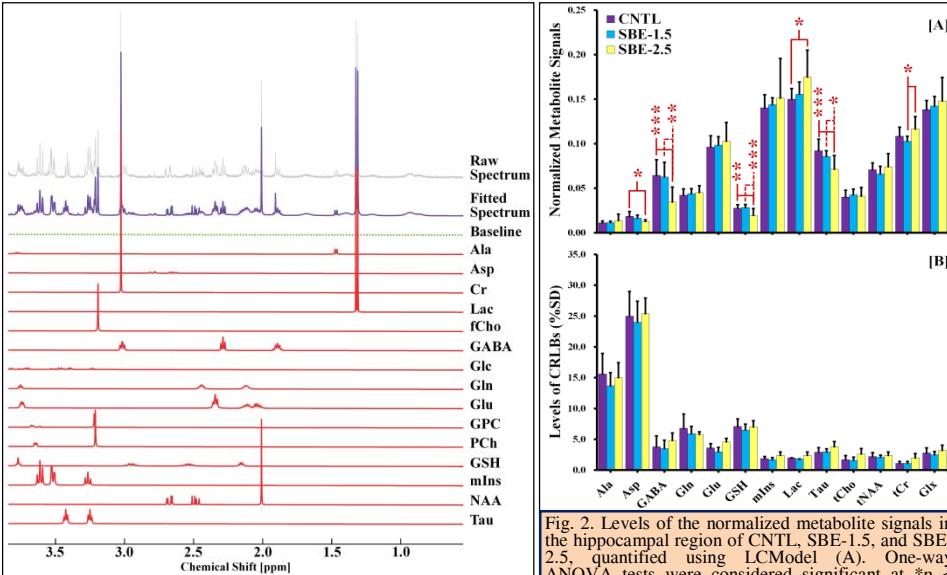


Fig. 1. Representative *ex vivo* ¹H NMR spectra acquired at 11.7 T from short-term binge ethanol-exposed rats in the hippocampal region. Quantified spectra are represented by several colors, as follows: Fitted spectra (purple), raw spectrum (grey), baseline (dotted green), and metabolite signals (red).

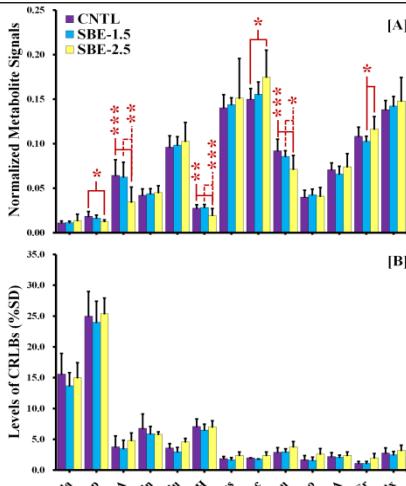


Fig. 2. Levels of the normalized metabolite signals in the hippocampal region of CNTL, SBE-1.5, and SBE-2.5, quantified using LCModel (A). One-way ANOVA tests were considered significant at * $p < 0.05$, ** $p < 0.01$, and *** $p < 0.005$. Cramer-Rao lower bound (CRLB) levels are expressed as percentage standard deviation (% SD) (B). Vertical bars indicate the positive standard deviation from the mean.

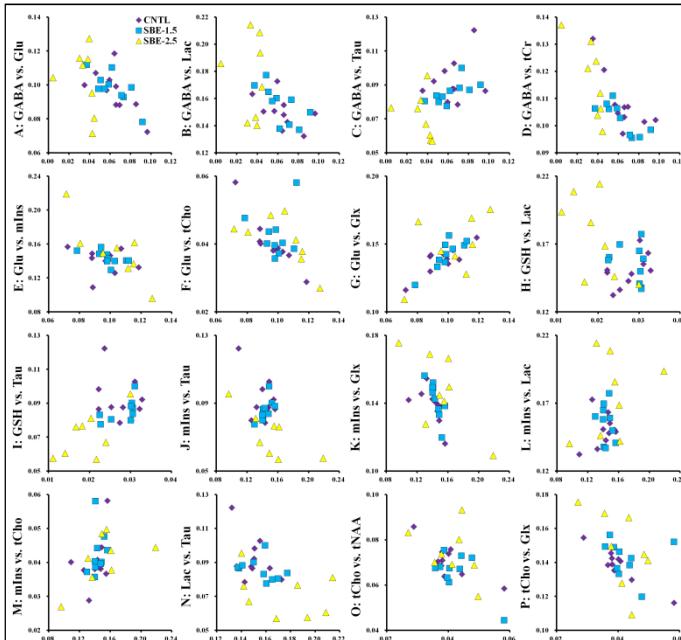


Fig. 3. Scatter plots of the metabolite-metabolite level correlations quantified from individual rats that were distinguished by symbols among the CNTL (purple rhombus), SBE-1.5 (blue square), and SBE-2.5 (yellow triangle) rats.

assess the relationship among them, the pairs of normalized metabolite levels that changed the most were selected for linear scatter plots (Figure 3A–P). The clusters of individual data from the 28 rats were significantly correlated in sixteen scatter plots. The illustrations in A–P show the relationships between the pairs of normalized metabolite levels as follows: GABA vs. Glu: *** $p = 0.003$ (A), GABA vs. Lac: *** $p = 0.002$ (B), GABA vs. Tau: *** $p = 0.004$ (C), GABA vs. tCr: *** $p < 0.001$ (D), Glu vs. mInos: *** $p = 0.001$ (E), Glu vs. tCho: *** $p = 0.001$ (F), Glu vs. Glx: *** $p < 0.001$ (G), GSH vs. Lac: *** $p = 0.003$ (H), GSH vs. Tau: *** $p = 0.001$ (I), mInos vs. Tau: *** $p = 0.002$ (J), mInos vs. Glx: *** $p = 0.001$ (K), mInos vs. Lac: * $p = 0.047$ (L), mInos vs. tCho: * $p = 0.014$ (M), Lac vs. Tau: *** $p = 0.001$ (N), tCho vs. tNAAG: *** $p = 0.001$ (O), and tCho vs. Glx: *** $p = 0.004$ (P). The selected correlated scatter plots exhibited highly significant levels and reliable correlation coefficients.

Discussion and Conclusion: In the present study, we conducted *ex vivo* NMR spectroscopy in a rat model to quantitatively assess the dose-dependent influences of SBE exposure on cerebral neurochemical changes in the rat hippocampal region. In line with the findings of previous studies, we report altered Asp, GABA, GSH, Lac, Tau, and tCr signals in SBE-exposure rats. These results may indicate that SBE exposure leads to various biological changes, such as changes in the rate of GABA and glucose synthesis, impairment of an antioxidant defense system, abnormal ATP function in energy metabolism, and dysfunctions of anaerobic respiration^{2,3,5}. Overall, our *ex vivo* ¹H NMR spectroscopy results suggest novel metabolic markers for assessing the dose-dependent effects of SBE exposure in the hippocampal region.

References: 1. Zahr NM, et al. *Biol. Psychiat.* 2010;67:846–546. 2. Cippitelli A, et al. *Neurobiol. Learn. Mem.* 2010;94:538–546. 3. Crews FT, et al. *Alcoholol. Clin. Exp. Res.* 2000;24:1712–1723. 4. Majchrowicz E. *Psychopharmacologia* 1975;43:245–254. 5. Lee DW, et al. *Neuroscience* 2014;202:107–117. **Acknowledgments:** The authors declare no conflicts of interest. This study was supported by the program of Basic Atomic Energy Research Institute (BAERI) (2009-0078390), and the Basic Science Research Program (2010-0008096), and a grant (2012-007883) from the Mid-career Researcher Program through the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea. And, this work was supported by the Industrial R&D program of MOTIE/KEIT.