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The target audience of this study is neuroimaging scientists and clinicians, particularly radiologists and neurologists. 
PURPOSE: Although quantitative analysis tools of brain MRI data have advanced substantially in the past decade, they have not 
being widely translated to the clinical diagnosis. One of the reasons is their sensitivity to imaging protocols, which requests data 
acquired with a highly consistent protocol. In this study, we examined the robustness of a state-of-the-art multiple-atlas brain 
segmentation tool. This tool identifies 286 brain structures automatically without pre-processing such as skull stripping. We analyzed 
72 healthy brains, with various image protocols, from Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). 
The impact of the protocol was then evaluated with respect to biological effects such as aging.  
 
METHODS: 72 high-resolution T1-weighted sagittal scans (MPRAGE) 
of healthy individuals from the ADNI were used, which include three 
manufacturers and two field strengths as shown in Table 1. All 
images were parcellated by a cloud-based fully automated process 
(https://mricloud.org/) based on large diffeomorphic deformation 
metric mapping1 and a multi-atlas likelihood fusion algorithm2. 286 
structures were defined with a five-level ontological hierarchy relationship3. Differences in protocols and age effect were tested by 
ANOVA and Pearson regression, respectively, and reviewed by bootstrapping (1000 folds). The p-values were corrected for multiple 
comparisons with Bonferroni, at p<0.05. 
RESULTS: Only two structures (rectus gyrus and inferior temporal) showed volumes significantly affected by the protocols (Fig. 1).  
Significant age effects were observed in various brain regions regardless of the heterogeneity of the protocols (Fig. 2). The age 
effects explained 10.4% of the total data variation while the protocol explained 1.5%, and the error, 1%.  

 
 
 
 

 
DISCUSSION and CONCLUSION: The results 
indicate that, regardless of the large amount of 
protocol differences, the multi-atlas tool was 
highly robust to detect age (biological) effect. 
Only two regions were significantly affected by 
the protocol variation, while the age effect was 
clearly delineated in the ventricles and in 
multiple structures in the parenchyma. This 
robustness is a key to apply automated 
quantification tools of brain MRI data in clinical 
diagnosis.  
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Manufacturer - Tesla Sample size Age (years) Resolution (mm)
Philips - 1.5 12 75-90 1.2x0.94x0.94
Philips - 3.0 12 66-91 1.2x1x1

Siemens - 1.5 12 65-96 1.2x1.25x1.25
Siemens - 3.0 12 56-86 1.2x1.x1

GE - 1.5 12 76-94 1.2x0.94x0.94
GE - 3.0 12 64-88 1.2x1.02x1.02

Fig. 1: Differences among protocols Fig. 2: Examples of significant correlations between regional normalized volumes (y axis) and age (x 
axis). The colors code the strength of the correlation (Pearson r); red/yellow are regions that shrink 
overtime (negative r) and purple / blue are regions that expand overtime. Gray / white are regions 
that did not show significant trends, at this level of granularity. Sul=sulcus, WM=white matter. 
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