Robustness of a fully automated brain segmentation tool for multiple MRI protocols: test for clinical applications
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The target audience of this study is neuroimaging scientists and clinicians, particularly radiologists and neurologists.

PURPOSE: Although quantitative analysis tools of brain MRI data have advanced substantially in the past decade, they have not
being widely translated to the clinical diagnosis. One of the reasons is their sensitivity to imaging protocols, which requests data
acquired with a highly consistent protocol. In this study, we examined the robustness of a state-of-the-art multiple-atlas brain
segmentation tool. This tool identifies 286 brain structures automatically without pre-processing such as skull stripping. We analyzed
72 healthy brains, with various image protocols, from Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
The impact of the protocol was then evaluated with respect to biological effects such as aging.

Manufacturer - Tesla Sample size Age (years) Resolution (mm)
METHODS: 72 high-resolution T1-weighted sagittal scans (MPRAGE) Philips - 1.5 12 75-90 1.2x0.94x0.94
of healthy individuals from the ADNI were used, which include three Philips - 3.0 12 66-91 1.2x1x1
manufacturers and two field strengths as shown in Table 1. All Siemens - 1.5 12 65-96 1.2x1.25x1.25
. Siemens - 3.0 12 56-86 1.2x1.x1
images were parcellated by a cloud-based fully automated process GE-15 12 76-94 1.2x0.94x0.94
(https://mricloud.org/) based on large diffeomorphic deformation GE-3.0 12 64-88 1.2x1.02x1.02

metric mapping1 and a multi-atlas likelihood fusion algorithmz. 286
structures were defined with a five-level ontological hierarchy relationship3. Differences in protocols and age effect were tested by
ANOVA and Pearson regression, respectively, and reviewed by bootstrapping (1000 folds). The p-values were corrected for multiple
comparisons with Bonferroni, at p<0.05.

RESULTS: Only two structures (rectus gyrus and inferior temporal) showed volumes significantly affected by the protocols (Fig. 1).
Significant age effects were observed in various brain regions regardless of the heterogeneity of the protocols (Fig. 2). The age
effects explained 10.4% of the total data variation while the protocol explained 1.5%, and the error, 1%.

Fig. 1: Differences among protocols Fig. 2: Examples of significant correlations between regional normalized volumes (y axis) and age (x
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DISCUSSION and CONCLUSION: The results
indicate that, regardless of the large amount of
protocol differences, the multi-atlas tool was
highly robust to detect age (biological) effect.
Only two regions were significantly affected by
the protocol variation, while the age effect was
clearly delineated in the ventricles and in ' o ’
multiple structures in the parenchyma. This 1 . ot ] ] . T

robustness is a key to apply automated
guantification tools of brain MRI data in clinical
diagnosis.
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