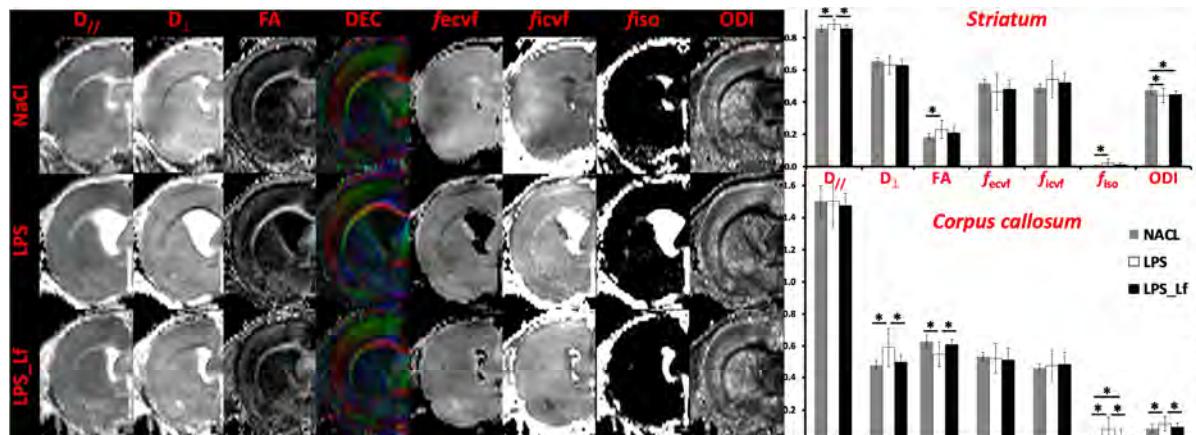


Neuroprotective effect of lactoferrin following inflammatory injury in the developing rat brain assessed by high-field neurite orientation dispersion and density imaging


Yohan van de Looij^{1,2}, Vanessa Ginet¹, Petra S Hüppi¹, and Stéphane V Sizonenko¹

¹Division of Child Growth and Development, University of Geneva, Geneva, Switzerland, ²Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Target audience: Inflammatory model of perinatal brain injury, neuroprotection by lactoferrin, diffusion imaging (DTI and NODDI).

Introduction: One of the main causes of brain lesion in the early preterm is infection-induced inflammation. As such, animal models of inflammatory preterm brain injury can be achieved by bacteria-derived lipopolysaccharide (LPS) exposure¹ in the 3-day old rat (P3) sharing some similarities in terms of cortical neuronal, glial and oligodendroglial development to the very preterm infant around 24–28 weeks of gestation. Lactoferrin (Lf) is an iron-binding glycoprotein secreted in milk known as antioxidant, antimicrobial and anti-inflammatory². In a previous work we showed on a model of intracerebral injection of LPS that Lf supplemented in food during lactation reduced LPS-induced alteration of the neurochemical profile at 24h as well as ventriculomegaly¹. Recently, the neurite orientation dispersion and density imaging (NODDI)³, a new practical diffusion MRI technique for estimating the microstructural complexity of neurites (*i.e.* dendrites and axons) has been successfully used *in vivo* on clinical MRI scanners³. NODDI provides estimation of microstructural parameters such as intra-neurite volume fraction (f_{icvf}), extra neurite-volume fraction (f_{ecvf}), cerebrospinal volume fraction (f_{iso}) and a new index called orientation dispersion index (ODI) to model the dispersion/fanning of the axonal fibers or dendrites. The aim of this work was to assess long-term neuroprotective effect of Lf on brain microstructure by using diffusion imaging and NODDI model at 9.4T in our model of LPS-induced inflammatory injury in the very immature brain.

Materials and Methods: Dams received either Lf-enriched food (0.85% Lf, 1 g/kg/day) or a diet isocaloric (Iso) to the Lf from the birth of pups (P0) and during 3 weeks. Lf dosage in sucked milk and serum showed that rat pups received Lf through breastfeeding⁴. At P3 pups were anesthetized with isoflurane and injected with 1 μ L of NaCl (Sham) or NaCl containing LPS (10 μ g) in the subcortical white matter. Three groups were studied: NaCl (Sham), LPS and LPS_Lf (n=14/group). Effect of Lf was assessed 20 days following LPS injection. MR experiments were performed on an actively-shielded 9.4T/31cm magnet (Agilent) equipped with 12-cm gradient coils (400mT/m, 120 μ s) with a quadrature transceive 20-mm surface RF coil. A multi-b-value shell DWI protocol was acquired using EPI 4-shots sequence with the following parameters: FOV = 23 \times 15 mm², matrix size = 128 \times 64, 8 slices of 0.8 mm thickness in the axial plane, 6 averages with TE/TR = 42/2000 ms. A total of 54 DWI were acquired, three of them were b_0 reference images. The remaining 51 were separated in 2 shells with the following distribution (# of directions/b-value in s/mm²): 21/1000 and 30/2000. All 51 directions were non-collinear and uniformly distributed in each shell. The acquisition time was 2h. Acquired data were fitted using the NODDI toolbox³. Ventricle volumes were measured. A Mann-Whitney test was used to compare statistically values measured in the corpus callosum (CC) and striatum (St) between the different groups (significance for $P<0.05$).

Results: As previously shown¹ LPS exposed groups presented obvious ventriculomegaly which was significantly reduced in Lf-treated rat pups (LPS: 24.18 \pm 3.32 mm³; LPS_Lf: 12.87 \pm 3.06 mm³; $P<0.05$). In the CC (Fig.1), a significant decrease of FA related to increase of D_{\perp} was observed in the LPS group compared to both NaCl and LPS_Lf groups. Indeed, f_{iso} and ODI were increased in LPS group compared to both NaCl and LPS_Lf groups. In the St (Fig. 1), D_{\parallel} and FA were significantly increased in the LPS group compared to NaCl whereas restored in the LPS_Lf group; f_{iso} was increased in the LPS rats whereas ODI was decreased in the LPS and LPS_Lf rats compared to NaCl.

Discussion and conclusion: In this study we show for the first time feasibility of NODDI *in-vivo* on the rat brain at 9.4T. LPS cerebral exposure leads to acute changes in the CC: myelination defect as depicted by FA and D_{\perp} changes; ODI might be increased by injured CC with fibers less compacted whereas f_{iso} increase is probably related to water contamination from ventricles. All these changes are restored in the CC of Lf-supplemented rats. In the St, microstructure becomes more organized (axonal fascicle area increases - data not shown) with LPS as depicted by increased D_{\parallel} and FA as well as decreased ODI. In the other hand, f_{iso} increases in LPS group and in a less extent in the LPS_Lf groups, probably related to water contamination from ventricles as in the white matter. A partial neuroprotection is observed in the St of Lf supplemented rats with only abnormal ODI values. In conclusion, Lf supplemented in food during lactation reduces long-term LPS-induced alterations of the microstructure. NODDI investigation is very relevant in such application, leading to very accurate assessment of LPS-induced brain injury and Lf neuroprotective effects.

References: 1. van de Looij Y. #3768 in ISMRM 2014; 2. Somm E. Ped. Res. 2014; 3. Zhang H. NeuroImage 2012; 4. van de Looij Y. Annals Clin. Trans. Neurol. 2014. **Supported by** the Fond National Suisse (N° 31003A-135581/1), the CIBM of the UNIL, UNIGE, HUG, CHUV, EPFL, Leenards and Jeantet foundation.

Fig. 1: DTI derived maps: diffusivity (D_{\parallel} and D_{\perp}), FA and color maps as well as NODDI derived maps, f_{ecvf} , f_{icvf} , f_{iso} and ODI maps of a typical ipsilateral NaCl, LPS and LPS_Lf rat brain. Right panel: mean values \pm SD of these parameters in the St and CC for each group. *: $P<0.05$, diffusivity: $\times 10^{-3} \text{ mm}^2 \cdot \text{s}^{-1}$.