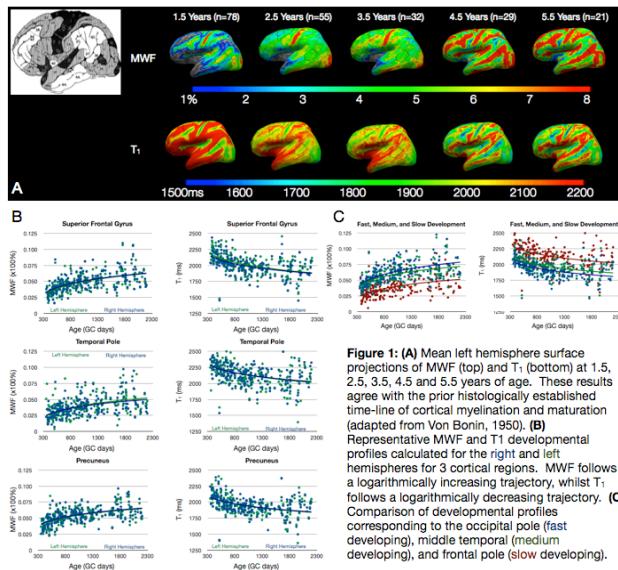


Investigating Cortical Myelination and Maturation using Quantitative Myelin Water Fraction and Relaxation Time Imaging

Sean Deoni¹, Justin Remer¹, Douglas Dean¹, and Jonathan O'Muircheartaigh²

¹Advanced Baby Imaging Lab, Brown University, Providence, RI, United States, ²Neuroimaging, King's College London, London, England, United Kingdom


Target Audience: Developmental neuroscientists.

Introduction: Early childhood is a rapid period of brain development. Myelination, dendritic sprouting, and synaptic pruning yield the optimized brain networks that underly cognitive, behavioral, and motor functioning. While several studies have sought to investigate white matter maturation and myelination across childhood¹⁻³, cortical myelination remains understudied. Cortical changes have traditionally been investigated via cytoarchitecture, however, myeloarchitecture has seen increased attention with the introduction of methods proposed to be sensitive to cortical myelin⁴. However, these techniques are qualitative and, thus, may be unable to reveal individual differences, or identify associations with cognitive or behavioral outcomes. In this work, we sought to use quantitative imaging techniques (namely, myelin water fraction and T_1 relaxation time imaging) to investigate the maturation of cortical myeloarchitecture in a large cohort of healthy and typically developing children.

Purpose: To investigate the use of quantitative myelin water fraction and T_1 relaxation time imaging to map the evolution of cortical myelo and cyto-architecture in older infants, toddlers, and young children, 1 to 6 years of age.

Methods: *MRI Acquisition:* Whole-brain myelin water fraction (MWF) and T_1 maps were acquired of 215 (105 female) healthy and typically developing children using mcDESOT⁵, DESOT1, and DESOT2⁶, with incorporated B_1 inhomogeneity correction⁷. Age optimized protocols were used¹, providing a constant voxel resolution of (1.8x1.8x1.8)mm³. Children ranged from 363 to 2198 days (approx. 1 to 6 years) of age, corrected to a 40 week gestation. A high resolution (1.2x1.2x1.2)mm³ T_1 -weighted anatomical image was also acquired. All data collection was performed on a Siemens Tim Trio with a 12-channel head

RF array. *Cortical Projections of T_1 and MWF:* Each child's high resolution anatomical image was intensity normalized⁸ and freesurfer⁹ analysis performed to delineate the cortical ribbon and segment the cortex into 48 distinct regions per hemisphere. Each child's T_1 and MWF maps were linearly co-registered¹⁰ to their high resolution image, and at each cortical vertex, the mean orthonormal T_1 , T_2 and MWF values calculated through the cortical ribbon was projected onto the surface. Age-averaged T_1 and MWF surfaces were then calculated by registering all children's surfaces to a custom mean template and averaging those between: 363-712 days (1.5 Years); 718-1099 days (2.5 Years); 1102-1442 days (3.5 Years); 1469-1814 days (4.5 Years); and 1836-2198 days (5.5 Years). *Developmental Trajectories of Cortical T_1 , T_2 and MWF:* From the individual surface projections, plots of regional mean T_1 and MWF vs. age were constructed for 11 bilateral regions, including the inferior and middle temporal, lingual, inferior and superior frontal, and pre and post-central gyri; occipital and temporal poles; precuneus and cingulum¹¹.

Figure 1: (A) Mean left hemisphere surface projections of MWF (top) and T_1 (bottom) at 1.5, 2.5, 3.5, 4.5, and 5.5 years of age. These results agree with the prior histologically established time-line of cortical myelination and maturation (adapted from Von Bonin, 1950). (B) Representative MWF and T_1 developmental profiles calculated for the right and left hemispheres for 3 cortical regions. MWF follows a logarithmically increasing trajectory, whilst T_1 follows a logarithmically decreasing profile. (C) Comparison of developmental profiles corresponding to the occipital pole (fast developing), middle temporal (medium developing), and frontal pole (slow developing).

differences associated with developmental disorders (e.g., autism) or intellectual ability.

References: 1. Deoni SCL, et al. Neuroimage. 2012;63:1038-53. 2. Barkovich AJ, et al. 1988;166(1 Pt 1):173-80. 3. Brody BA, et al. J. Neuropathol. Exp. Neurol. 1987;46:283-301. 4. Glasser MF, Van Essen DC. J Neurosci. 2011. 5. Deoni SCL, et al. Magn Reson Med. 2008;60:1372-87. 6. Deoni SCL, et al. Magn Reson Med. 2005;53:237-41. 7. Deoni SCL. J Magn Reson Imaging. 2009;30:411-7. 8. Boyes RG, et al. Neuroimage. 2008;39:1752-62. 9. Fischl B. FreeSurfer. Neuroimage. 2012;62:774-81. 10. Jenkinson M, et al. Neuroimage. 2002;17:825-41. 11. Shaw P, et al. Am J Psychiatry. American Psychiatric Association; 2011;168(2):143-51.