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Target Audience: MR researchers in reconstruction and clinicians for fast imaging  

Purpose: Compressed Sensing (CS) and Parallel Imaging (PI) methods accelerate acquisition speed by significantly reducing k-space sampling yet produce 
high quality images by imposing a priori and data-based information as constraints. Recently, constrained reconstruction has made extensive use of low-rank 
models, including in the calibrationless PI approaches [1,2], which enforce a global low-rankness of multi-coil data in k-space, or a local low-rankness across 
multiple coils in the image domain. In this work, we introduce a novel image domain-based constrained reconstruction technique, applicable for CS & PI, that 
exploits the correlation of the image data across different coils and the inherent non-local self-similarity property of images (image structures tend to repeat 
themselves in an image scene) using a non-local total variation (NLTV) regularization framework.   
Theory: Non-local regularization techniques capture information about complex image structures [3] and favor reconstructions that exhibit the non-local self-
similarity property. In this work, we employ the NLTV regularizer [3] in a novel setting and obtain image reconstructions from multiple MRI acquisitions 
without the explicit knowledge of the coil sensitivities. Our image reconstruction is formulated as the solution of the following optimization problem: 

 

where E is the multi-coil 
encoding operator, y is k-space data, xc is the c-th underlying coil image, and ∇NL

is the 

non-local graph gradient. The minimizer is obtained by utilizing the Split-Bregman 
method [4]. The final image corresponds to the sum-of-squares (SoS) of the C estimates. 
Methods: NLTV was applied to reconstruct a 256×256 image matrix of an 8-channel 
multi-coil brain image data retrospectively undersampled with random, variable density 
sampling masks at reduction factors (RF) 2 – 7. These images were normalized with 
respect to maximum image magnitude, and contaminated with 5 levels of Gaussian noise 
(standard deviations σ = 0.01, 0.02, 0.03, 0.04, & 0.05 corresponding to maximum SNR’s 
of 100, 50, 33, 25, & 20, respectively). All k-space data contained a fully sampled 20×20 
central region. For comparison purposes, CLEAR [1] was also applied to the same data 
set. Both the NTLV and CLEAR algorithms were implemented in MATLAB (version 
8.1) and run on a Linux workstation with a 4.4 GHz CPU and 96 GB memory. The 
thresholding parameter for CLEAR adaptively adjusts in proportion to the 
median magnitude of transform-domain coefficients, whereas the regularization 
parameter for NLTV was optimized empirically by minimizing the normalized 
root-mean square error (nRMSE) for all cases. The patch size for CLEAR was set 
to 8×8, and the number of non-local weights, the patch size and search window 
for NLTV were set to 9, 7×7, and 11×11, respectively.  Each algorithm was run 
for a maximum of 60 iterations. For all cases, the zero-filled sum-of-squares 
(SoS) image was pre-smoothed and used to estimate the non-local weights 

necessary in the definition of 
the NLTV penalty. For the 
computation of the distance 
between image patches the 
Euclidean norm of their 
difference was used (Fig.1). 
The nRMSE values of the SoS 
images, computation times, 
and visual assessment of image 
quality serve as the basis for 
comparison. 
Results:  For SNR’s below 
approximately 67, and for all 
reduction factors, NLTV has 
superior performance in terms 
of nRMSE and image quality, 
as compared to CLEAR (Table 
1). As seen in Fig. 2, NLTV is able to minimize contribution from noise, yet preserves 
fine features without the oversmoothing typical of local TV.  NLTV’s reconstruction 
time is significantly faster at 305 ± 86 seconds (s), while that of CLEAR is 626 ± 71 s.  
Discussion: NLTV shows competitive results in relation to other image domain-based 
constrained methods that incorporate a local smoothness prior in the reconstruction. However, results indicate that NLTV has similar or slightly less accuracy 
under cases of very low or no-added noise (Fig.3).  Nonetheless, even as the reduction factor and noise level increases, NLTV reconstruction exhibits great 
stability in terms of nRMSE. At a given reduction factor, the nRMSE increases only by approximately 0.01 from lowest to highest noise, whereas CLEAR, for 
example, produces results that increase by up to 0.025. 
Conclusion: The proposed method encompasses a joint CS-PI approach by exploiting data redundancy using multiple coils to achieve high-quality 
reconstruction. NLTV-based regularization demonstrates substantial advantages with regard to high levels of noise. This type of reconstruction may better 
serve applications that suffer from inherent SNR limitations. 
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Fig. 1:  Illustration of weights computation for pixel i (centered 
in white patch), estimated with a pre-smoothed zero-filled SoS 
image (left), then enforced along all C coil images  (right).  

Fig. 2: Reconstructed image results for reduction factor 5 and 
σ = 0.03.  (A) Fully-sampled original (B) Zero-filled (C) CLEAR 
(D) NLTV (E) Zoom-in of original (F) Zoom-in of CLEAR  
(G) Zoom-in of NLTV 

Table  1:  nRMSE values (NLTV/CLEAR) for various levels of noise and 
reduction factors  

Fig. 3: nRMSE vs. added noise for CLEAR & NLTV for 
reduction factors 5, 6, & 7.  
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