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Target Audience: MR researchers in reconstruction and clinicians for fast imaging

Purpose: Compressed Sensing (CS) and Parallel Imaging (PI) methods accelerate acquisition speed by significantly reducing k-space sampling yet produce
high quality images by imposing a priori and data-based information as constraints. Recently, constrained reconstruction has made extensive use of low-rank
models, including in the calibrationless PI approaches [1,2], which enforce a global low-rankness of multi-coil data in k-space, or a local low-rankness across
multiple coils in the image domain. In this work, we introduce a novel image domain-based constrained reconstruction technique, applicable for CS & PI, that
exploits the correlation of the image data across different coils and the inherent non-local self-similarity property of images (image structures tend to repeat
themselves in an image scene) using a non-local total variation (NLTV) regularization framework.

Theory: Non-local regularization techniques capture information about complex image structures [3] and favor reconstructions that exhibit the non-local self-
similarity property. In this work, we employ the NLTV regularizer [3] in a novel setting and obtain image reconstructions from multiple MRI acquisitions
without the explicit knowledge of the coil sensitivities. Our image reconstruction is formulated as the solution of the following optimization problem:
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non-local graph gradient. The minimizer is obtained by utilizing the Split-Bregman
method [4]. The final image corresponds to the sum-of-squares (SoS) of the C estimates.
Methods: NLTV was applied to reconstruct a 256x256 image matrix of an 8-channel
multi-coil brain image data retrospectively undersampled with random, variable density
sampling masks at reduction factors (RF) 2 — 7. These images were normalized with
respect to maximum image magnitude, and contaminated with 5 levels of Gaussian noise
(standard deviations ¢ = 0.01, 0.02, 0.03, 0.04, & 0.05 corresponding to maximum SNR’s
of 100, 50, 33, 25, & 20, respectively). All k-space data contained a fully sampled 20x20
central region. For comparison purposes, CLEAR [1] was also applied to the same data Fig. 1: Illustration of weights computation for pixel i (centered
set. Both the NTLV and CLEAR algorithms were implemented in MATLAB (version  in white patch), estimated with a pre-smoothed zero-filled SoS
8.1) and run on a Linux workstation with a 4.4 GHz CPU and 96 GB memory. The image (left), then enforced along all C coil images (right).
thresholding parameter for CLEAR adaptively adjusts in proportion to the Noise

median magnitude of transform-domain coefficients, whereas the regularization \RF L ] 4 5 6 7
arameter for NLTV was optimized empirically by minimizine the normalized 0 | 0.037/0.026 | 0.046/0.036 | 0.051/0.043 | 0.054/0.049 | 0.055/0.054 | 0.058/0.057
P P P y by . g 0.01 | 0.0380.028 | 0.047/0.038 | 0.051/0.045 | 0.053/0.049 | 0.0550.053 | 0.058/0.056
root-mean square error (N(RMSE) for all cases. The patch size for CLEAR was set 0.02 | 0.041/0.04 | 0.048/0.049 | 0.053/0.05¢ | 0.0550.058 | 0.056/0.06 | 0.059/0.063
to 8x8, and the number of non-local weights, the patch size and search window 0.03 | 0.044/0.05 | 0.051/0.058 | 0.055/0.063 | 0.056/0.065 | 0.058/0.067 | 0.06/0.07

0.04 | 0.048/0.06 0.053/0.067 | 0.057/0.071 0.058/0.073 | 0.06/0.074 0.062/0.077
0.05 | 0.051/0.07 0.056/0.075 | 0.059/0.078 0.06/0.08 0.061/0.081 | 0.064/0.083

Table 1: nRMSE values (NLTV/CLEAR) for various levels of noise and
reduction factors

for NLTV were set to 9, 7x7, and 11x11, respectively. Each algorithm was run
for a maximum of 60 iterations. For all cases, the zero-filled sum-of-squares
(SoS) image was pre-smoothed and used to estimate the non-local weights

necessary in the definition of nRMSE vs. Noise o
the NLTV penalty. For the —=— CLEAR,RF =5 :
computation of the distance 0.08}| - CLEAR, RF =6

between image patches the o CLEAR,RF=7
0.075 | —=—NLTV, RF =6

Euclidean norm of their —+ NLTV.RF =6
difference was used (Fig.l). 007l 5 NLTV,RF=7
The nRMSE values of the SoS E
images, computation times,
and visual assessment of image
quality serve as the basis for
comparison.
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of nRMSE and image quality, Fig. 3: nRMSE vs. added noise for CLEAR & NLTV for
as compared to CLEAR (Table reduction factors 5, 6, & 7. 4
1). As seen in Fig. 2, NLTV is able to minimize contribution from noise, yet preserves Fig. 2: Reconstructed image results for reduction factor 5 and
fine features without the oversmoothing typical of local TV. NLTV’s reconstruction © =0.03. (A) Fully-sampled original (B) Zero-filled (C) CLEAR

time is significantly faster at 305 + 86 seconds (s), while that of CLEAR is 626 + 71 s. (D) NLTV (E) Zoom-in of original (F) Zoom-in of CLEAR

Discussion: NLTV shows competitive results in relation to other image domain-based (G) Zoom-in of NLTV

constrained methods that incorporate a local smoothness prior in the reconstruction. However, results indicate that NLTV has similar or slightly less accuracy
under cases of very low or no-added noise (Fig.3). Nonetheless, even as the reduction factor and noise level increases, NLTV reconstruction exhibits great
stability in terms of nRMSE. At a given reduction factor, the nRMSE increases only by approximately 0.01 from lowest to highest noise, whereas CLEAR, for
example, produces results that increase by up to 0.025.

Conclusion: The proposed method encompasses a joint CS-PI approach by exploiting data redundancy using multiple coils to achieve high-quality
reconstruction. NLTV-based regularization demonstrates substantial advantages with regard to high levels of noise. This type of reconstruction may better
serve applications that suffer from inherent SNR limitations.

References: [1] Trzasko, J.D., Manduca, A. (Asilomar Conf., IEEE, 2011) [2] Shin et. al., MRM (2013) [3] Gilboa, G., Osher, S., SIAM (2008) [4]
Goldstein T., Osher, S., STAM (2009)

Proc. Intl. Soc. Mag. Reson. Med. 23 (2015) 3418.



