Structural feature based collaborative reconstruction for quantitative susceptibility mapping
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Purpose Quantitative susceptibility mapping (QSM) enables non-invasive mapping and quantitative annalysis of tissue magnetic susceptibility. However, the
reconstruction of magnetic susceptibility distributions from local phase information is an ill-posed inverse problem. The calculation of susceptibilities through multiple
orientation sampling (COSMOS)" provides high quality images, but acquiring such data is inconvenient especially for in vivo study of patients. According to the
observation that the morphology information extracted from the acquired magnitude image shares common features with that extracted from susceptibility maps,
regularization methods based on apriori information extracted from magnitude data, such as morphology enabled dipole inversion (MEDI), have been proposed™**.
However, there are still some tissue edges that can be easily observed in susceptibility maps but have little or no contrast in magnitude images (arrows in Fig. 1(c)-(d)),
which generates possible errors for MEDI. We propose a structural feature based
collaborative reconstruction (SFCR) method for QSM to address this issue.
Theory Denoting the dipole kernel in the k-space with C, (k) = (1/ 3-k? / k2) , the
susceptibility map can be obtained as y, (k)=C, (k)" ¢,(k), where y is the
susceptibility distribution and ¢ is the measured field map. Our proposed
approach is composed of two steps: the M-step and S-step.
A. M-step: regional adaptive reconstruction based on magnitude apriori
First, we reconstruct the susceptiblity map
model based on compressed sensing as
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where F is a Fourier operator to transform 7, into Fourier transform domain. H is a
binary mask corresponding to
subdomains. The weighting matrix P, . is set as a binary mask assigned zero to
the voxels with large magnitude gradients VM and one to those voxels with small
gradients. V denotes the three dimensional gradient operator. The last item is a
smooth constraint with a ROI mask. A; and A, are regularization parameters.
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B. S-step: collaborative reconstruction based on susceptibility structural feature i .
To compensate the differences in the apriori derived from susceptibility and that X o o o. S S SRR

from magnitude image, we propose to use the susceptibility § obtained in the i i 015 S0 100 = 200,
M-step to formulate collaborative reconstruction model with Fig.1 In vivo human brain data at 7T. (a) the magnitude image, (b) rQSM using
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The fidelity term in S-step is evaluated in the spatial domain as a complementary

COSMOS, (c) and (d) are gradient maps of (a) and (c); (e)-(h) are calculated
QSMs with TDK, LSQR, MEDI and SFCR shown in scale [-0.15,0,15]ppm. (i)
coronal and sagittal view of SFCR, (j) QSM profile along the line drawn on (a).

to the M-step fidelity term in k-space. ® is a weighting matrix proportional to

SNR of each voxel. With a weighted /1 sparse constraint, textures and edges corresponding to the structural
features in the susceptibility distribution are emphasized in the reconstruction, while tiny variations are
suppressed as noise. The feature weighting matrix P, is derived from the susceptibility gradients of § with
threshold 4, . The objective functions are two convex optimization problems. By introducing a variable
b =[| PVy||, , it can be solved in two sub-procedures: fixed  and solving b by iterative threshold shrinkage
algorithm, and then fixed b to solve ¥ with conjugate gradient algorithm.

Methods In vivo healthy human brain data were acquired at 7T Philips Health-care using a 32-channel
Novamedical head coil. A 3D multi-echo GRE sequence was used with 1 mm isotropic resolution, matrix
size of 224x224x110, TR/TE1/ATE=45/2/2ms, 16 echoes’. Each subject was scanned with the head placed
at four different orientations. COSMOS was calculated using data from all four directions and used as gold
standard. In addition, QSMs for a single orientation were calculated using TDK®, LSQRS, MEDI* and
SFCR. Parameters in SFCR were set as A,=50, A,=1, 7,=6000, 1,=30, while A in MEDI* was optimized to
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Fig.2 Susceptibility comparison (mean =+ standard error)
in different brain regions. CN:caudate nucleus, GP:globus
pallidus,PU:putamen,RN:red nucleus,SN:substantia nigra.

Table 1 SFCR reconstruction performance evaluation.

Method Error RMSE MSSIM CompTime/s
10,000. A ROI based quantitative comparison was performed, in which susceptibility values were TDK  1.83 2994  0.9354 0.25
measured relative to CSF in lateral ventricles. ROIs were selected based on a human brain atlas”. LSQR 27.28 23.40  0.9666 1427.35
Results and Discussion As shown in Fig.1, tissue edges derived from magnitude images (c) and MEDI 1243 2375  0.9664 146.18

SFCR 10.33 18.52  0.9776 124.88

susceptibility maps (d) have some quality differences (indicated by arrows). Using COSMOS as a reference,
we found that susceptibility maps generated by SFCR presented better structure consistency (red circles) and better artifact suppression than other single orientation
QSM methods, especially in the regions with susceptibilty changing sharply (white arrows). Susceptibility values calculated by different methods in selected deep gray
matters are shown in Fig.2. The SFCR reconstruction accuracy is evaluated in Table 1 using the fidelity error || Cy - ¢ ||> , QSM RMSE, structure similarity MSSIM to
COSMOS, and computation time. Compared to MEDI, SFCR achieved less fidelity error and RMSE, higher structure agreement and reduced computation time.
Conclusion The proposed SFCR method utilizes collaborative reconstruction compensating the structure differences in susceptibility and magnitude images to achieve
more accurate QSM estimation. Combining iterative threshold shrinkage algorithm with conjugate gradient algorithm can further facilitate optimization problem
solution. These may help the QSM technology to get a wider range of applications.

Acknowledgment This work was supported by NNSF of China under Grants 81301277, Research Fund for the Doctoral Program of Higher Education of China under
Grant 20130121120010 and NSF of Fujian Province of China under Grant 2014J05099, and by NIH grant P41 EB015909.

References 1. Liu T, et al. Magn Reson Med, 2009. 2. Wu B, et al. Magn Reson Med, 2012. 3. Schweser F, et al. Neurolmage, 2012. 4. Liu T, et al. Magn Reson
Med, 2013. 5. Li X, et al. Neurolmage, 2012. 6. Wharton S, et al. Magn Reson Med, 2010.

Proc. Intl. Soc. Mag. Reson. Med. 23 (2015) 3322.



