DirEct Complex signAl Fitting (DECAF) for multi-compartment analysis in white matter

Yoonho Nam¹, Dong-Hyun Kim², and Jongho Lee¹

Department of Electrical and Computer Engineering, Seoul National University, Seoul, Seoul, Korea, Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea

Target audience: Researchers interested in multi-compartment analysis in white matter or quantitative myelin imaging.

Purpose: Recent studies have demonstrated that signals from three water compartments-myelin, axonal, and extracellular water-in white matter have different B₀ orientation dependent frequency offsets¹⁻⁴. This observation improved data fitting results in GRE-based MWI by using complex signal fitting as compared to magnitude signal fitting^{2,5}. However, the complex signal fitting approaches applied in the previous studies^{1,3,4} required several pre-processing steps including a nonlocal background field removal step. Therefore, the results were strongly influenced by them. In this study, we propose a new fitting method that does not require a prior background field removal step. This method shows improvement in parameter estimation.

Methods: The three pool complex signal is modeled as follow:

$$S(t) = (A_{my}e^{-(1/T_{2,my}^* + i2\pi\Delta f_{my})t} + A_{ax}e^{-(1/T_{2,ax}^* + i2\pi\Delta f_{ax})t} + A_{ex}e^{-(1/T_{2,ex}^* + i2\pi\Delta f_{ex})t}) e^{-(i2\pi\Delta f_{bg})t} e^{-(i\phi_0)},$$

where A_i , $T_{2,i}^*$, Δf_i : relative amplitude, relaxation time, and frequency offset of each compartment (i = my: myelin, ax: axonal, and ex: extracellular water), Δf_{bg} : nonlocal background frequency offset, \emptyset_0 : a phase offset from transmit B_1 . In the previous studies 1,3,4, the background frequency and phase offset terms (Δf_{bg} and \emptyset_0) were estimated and removed before data fitting. In our method, these terms were estimated during the fitting as follows: First, Δf_{bg} was merged into the frequency offset terms of each pool $(S(t) = (A_{my}e^{-(1/T_{2,my}^* + i2\pi\Delta f_{my+bg})t} + A_{ax}e^{-(1/T_{2,ax}^* + i2\pi\Delta f_{ax+bg})t} + A_{ax}e^{-(1/T_{2,ax$ $A_{ex}e^{-\left(1/T_{2,ex}^*+i2\pi\Delta f_{ex+bg}\right)t})\ e^{-(i\emptyset_0)}\ \text{ where }\ \Delta f_{my+bg}=\Delta f_{my}+\Delta f_{bg},\ \Delta f_{ax+bg}=\Delta f_{ax}+\Delta f_{bg},\ \text{and }\ \Delta f_{ex+bg}=\underline{\Delta f_{ex}}+\Delta f_{bg}).\ \text{Then, this new model}$

was fitted to complex data using an iterative non-linear curve fitting algorithm (Isquonlin in MATLAB). The initial values and ranges for the fitting parameters are listed in Table 1. After estimating all parameters, Δf_{my} and Δf_{ax} were approximated by $\Delta f_{my+bg} - \Delta f_{ex+bg}$ and Δf_{ax+bg} – respectively. Δf_{ex+bg} , approximations were supported by a recent observation that the frequency offset of the extracellular water pool is close to zero⁴. Eleven volunteers (IRBapproved) were scanned at 3T (Siemens). A 3D GRE was acquired with following parameters: TR = 120 ms, # echoes = 32, $TE_1 = 2.1$ ms, ΔTE = 1.9 ms, flip angle $= 30^{\circ}$, BW = 1502Hz/px, 2 mm isotropic voxel, and 72 slices. DTI was acquired. For comparison, the fitting was also performed for complex data with high-

	Myelin water (my)			Axonal water (ax)			Extracellular water (ex)			Offset
	A_{my} (a.u.)	$T_{2,my}^*$ (ms)	Δf_{my+bg} (Hz)	A_{ax} (a.u.)	$T_{2,ax}^*$ (ms)	Δf_{ax+bg} (Hz)	A_{ex} (a.u.)	$T_{2,ex}^*$ (ms)	$\Delta f_{ex+bg} (Hz)$	$\emptyset_0(\text{rad})$
Initial value	$0.1 \times S_I $	10	$\Delta f_{bg,init}$	$0.6 \times S_I $	64	$\Delta f_{bg,init}$	$0.3 \times S_I $	48	$\Delta f_{bg,init}$	$\angle S_I$
Lower bound	0	3	$\Delta f_{bg,init}$ -75	0	24	$\Delta f_{bg,init}$ -25	0	24	$\Delta f_{bg,init}$ -25	-π
Upper bound	$2\times S_I $	24	$\Delta f_{bg,init} + 75$	$2 \times S_I $	150	$\Delta f_{bg,init} + 25$	$2 \times S_I $	150	$\Delta f_{bg,init} + 25$	π

Table 1. Initial values and search boundary. $S_1 = S(TE_1)$. $\Delta f_{bg,init} = \angle \{\sum_{n=1}^{17} S_n^* S_{n+1}\} / (2\pi \Delta TE)$: initial Δf_{bg} .

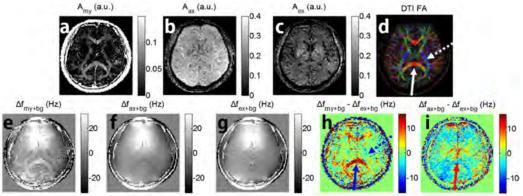
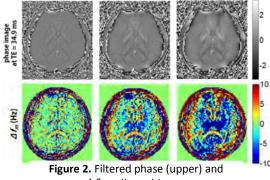



Figure 1. Estimated parameters using the proposed method

pass filtered phase with different kernel sizes (Gaussian; $\sigma = 2, 4, 8 \text{ mm}$).

Results: Figure 1 shows the estimated parameters from the proposed complex signal model. Despite Δf_{bq} terms merged in each frequency offset maps (Fig. 1e, f, g), microstructural frequency contrasts are observable for the myelin and axonal water compartments. The approximated Δf_{my} map (Fig. 1h) indicates large positive values in the perpendicular fibers (solid blue arrow) and relatively small values in the parallel fibers (dashed blue arrow). In the approximated Δf_{ax} map (Fig. 1i), negative values are observed in the perpendicular fibers (solid red arrow). These contrasts are in accordance with those from the previous studies^{3,4}. The results from the high-pass filtered phase data (Fig. 2) demonstrates that the background field estimation process has significant effects on the parameter estimation, which confirms the advantage of our new method.

Discussion & Conclusion: We demonstrated that the proposed method is effective in the multi-compartment analysis of complex GRE data. As shown in Figure 2, imperfect filtering before the model fitting leads to incorrect parameter estimation. Although more

 Δf_{my} (lower) images

sophisticated processing may reduce these errors ^{1,3,4}, it still pertains residual errors that could be significant during the sensitive data fitting process.

References: 1. Schweser, ISMRM 2011, p4527; 2. Van Gelderen, MRM 67, 2012; 3. Wharton PNAS, 2012; 4. Sati, Neuroimage, 2013; 5. Nam, ISMRM 2014, p337