

PDE Solution of Electrical Properties Tomography With Multi-channel B1 Transmission

Jiaen Liu¹, Yicun Wang¹, Xiaotong Zhang¹, Pierre-Francois Van de Moortele², and Bin He^{1,3}

¹Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States, ²Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States, ³Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, United States

Audience Researchers or physicians interested in topics including: EPT, MRI Safety, MRI RF Engineering, Electromagnetic Modeling, etc.

Purpose Electrical properties tomography (EPT) is a recently introduced technique for imaging the electrical conductivity and permittivity of tissue based on the measured radiofrequency (RF) field (B_1) distribution in MRI [1,2]. *In vivo* electrical properties (EP) can potentially benefit clinical diagnosis of diseases and RF heating quantification associated in high-field MRI applications [3]. The EPT equation can be transformed into a partial different equation (PDE) and solved using numerical PDE schemes such as finite element [4] or finite difference method [5]. The advantage of the PDE-based approach consists of improved EP result near the boundary and enhanced robustness against noise contamination. In this study, a multi-channel transceiver RF coil was utilized to provide multiple transmit B_1 field for solving the PDE. Differing from previous studies [4,6], the method here does not require assumption of equal transmit and receive RF phase which may be violated at higher field, and the need of pre-assigned boundary condition [4] was eliminated by using multiple excitations, beneficial for *in vivo* applications.

Theory By taking $\zeta = 1/\epsilon_c$ and ignoring the z-component of B_1 , the relationship $\left(\frac{\partial B_1^+}{\partial x} - i \frac{\partial B_1^+}{\partial y} \right) \left(\frac{\partial \zeta}{\partial x} + i \frac{\partial \zeta}{\partial y} \right) + \frac{\partial B_1^+}{\partial z} \frac{\partial \zeta}{\partial z} + \nabla^2 B_1^+ \zeta \approx -\omega^2 \mu_0 B_1^+$ (1) between transmit B_1 field (B_1^+) and ζ is described in eq. (1), where $\epsilon_c = \epsilon - i\sigma/\omega$, σ is the conductivity, ϵ the permittivity, ω the angular frequency and μ_0 the permeability of free space. It is noticed that with at least three independent excitations, the three items of $\partial \zeta / \partial x + i \partial \zeta / \partial y$, $\partial \zeta / \partial z$ and ζ can be determined voxel-wisely through solving a group of linear equations, and a unique EP solution is derived without an additional boundary condition. Similarly, when EP is assumed to be constant along the z-direction, two independent excitations are needed for determining a unique EP distribution in a slice.

Methods Simulation To investigate the feasibility of solving eq. (1) using multiple B_1^+ without a boundary condition, simulated B_1^+ was generated using finite-difference time-domain method. A 16-channel stripline RF coil [7] as shown in Fig. 1(a) was modeled in software SEMCAD and loaded with a realistic human head model (Ella) as shown in Fig. 1(b). The simulation grid size was set to $2 \times 2 \times 2 \text{ mm}^3$. A total of sixteen complex B_1^+ at 298 MHz were simulated for all coil elements. Assuming $\partial \zeta / \partial z = 0$, the PDE of eq. (1) was solved using a 2D finite difference method [5]. The method was tested with different number of transmit channels, i.e., 2 (#1 and 9), 4 (#1, 5, 9 and 13) and all 16 channels were chosen to provide complex B_1^+ , respectively. **Experiment** MRI experiment on a three-compartment gel phantom was conducted on a 7T MRI scanner (Siemens, Erlangen, Germany) equipped with the 16-channel stripline RF coil in Fig. 1(a), powered by 16x1kW RF amplifiers. EP of the phantom was measured using a dielectric probe (85070D, Agilent, Santa Clara, CA, USA). Data including magnitude $|B_1^+|$ and relative phase $\angle B_{1r}^+$ of all sixteen transmit channels were acquired using a hybrid B_1 -mapping technique [8,9]. In order to derive the absolute phase $\angle B_1^+$, eq. (1) was first solved using magnitude $|B_1^+|$ and relative phase $\angle B_{1r}^+$ [10]. Once $\angle B_1^+$ is obtained, eq. (1) was solved with the 2D finite difference method using complex transmit B_1 of all sixteen channels.

Results Simulation Fig. 1 (c-j) summarize the results of reconstructed EP using different number of transmit channels. As we can see, two channels are sufficient to derive a unique solution without using any boundary condition, while residual artifacts within certain regions in the 2- and 4-channel setup can be observed in Fig. 1(e-h). This is due to incomplete coverage of the whole slice with limited number of channels. Hafalir et al. [4] indicated that regions with weak $\partial B_1^+ / \partial x - i \partial B_1^+ / \partial y$ introduce more severe numerical error, which was largely mitigated as all sixteen channels were utilized as shown in Fig. 1 (i, j). The relative error (RE) and correlation coefficient (CC) of the reconstruction results using 2, 4 and 16 channels are $RE_{\sigma,2}=19.6\% / RE_{\epsilon,2}=14.1\% / CC_{\sigma,2}=0.16 / CC_{\epsilon,2}=0.02$, $RE_{\sigma,4}=15.0\% / RE_{\epsilon,4}=10.8\% / CC_{\sigma,4}=0.68 / CC_{\epsilon,4}=0.39$, $RE_{\sigma,16}=7.7\% / RE_{\epsilon,16}=9.1\% / CC_{\sigma,16}=0.93 / CC_{\epsilon,16}=0.73$, respectively. **Experiment** With the measured $|B_1^+|$ as shown in Fig. 2(a,c) and $\angle B_{1r}^+$ as shown in Fig. 2(b,d), calculated gradients of the absolute phase $\angle B_1^+$ of channel #16 are illustrated in Fig. 2(e) and (f), respectively. The center of the images were masked out due to extreme low B_1 resulted from the employed B_1 shim setting (CP2+ like [11]). As we can see in Fig. 2 (h), the reconstructed σ distribution clearly delineates the boundary of components and the σ value agrees with the probe measurement as shown in Fig. 2 (g), with reconstructed $\sigma_1=0.61\pm 0.08 \text{ Sm}^{-1}$, $\sigma_2=1.35\pm 0.26 \text{ Sm}^{-1}$ and $\sigma_3=0.47\pm 0.19 \text{ Sm}^{-1}$, in comparison with probe-measured values of 0.84, 1.60 and 0.56 Sm^{-1} , respectively.

Conclusion & Discussion In this study, a PDE-based approach to solve EPT problem using multi-channel transmission was investigated. A PDE-based approach is merited with improved performance near boundary and less severe artifact due to noise contamination. In the phantom experiment, it is shown that with 16 transmit channels, a unique EP solution can be found in consistent with the ground truth without using boundary conditions which are possibly not accessible under *in vivo* situations. The retrieved phase in Fig. 2(e, f) and reconstructed conductivity in Fig. 2(h) hold significant values for clinical diagnosis and RF safety applications.

References

- [1] Wen, *Proc. SPIE* 2003, 5030:471;[2] Katscher et al., *IEEE TMI* 2009, 28:1365; [3] Voigt et al., *MRM*, 2011, 66:456; [4] Hafalir et al., *IEEE TMI*, 2014, 33:777; [5] Iserles 2009; [6] Gurler et al., *ISMRM* 2014; [7] Adriany et al. *MRM* 2008, 59:590; [8] Van de Moortele et al., *ISMRM* 2007, 1676; [9]

Van de Moortele et al., *ISMRM* 2009; [10] Liu et al., *MRM*, 2014 online; [11] Orzada et al., *MRM*, 2013.

Acknowledgement

UMN
Doctoral Dissertation Fellowship, R21 EB017069, R21 EB014353, R01 EB006433, NSF CBET-1450956, P41 EB015894, R01 EB011551, S10 RR026783, WM KECK Foundation.

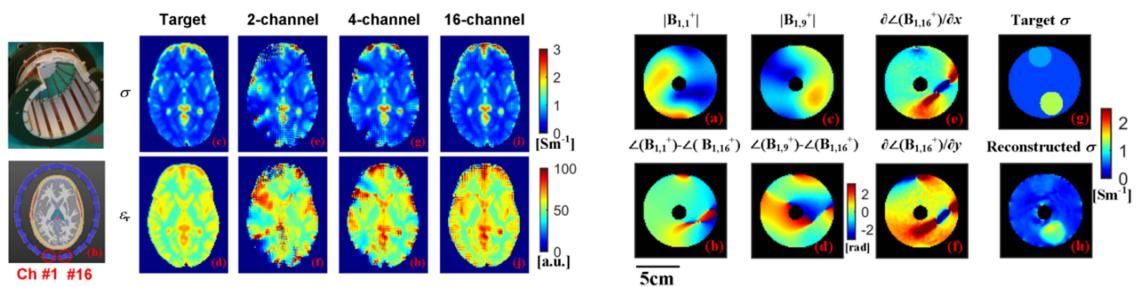


Fig. 1 Result in stimulation study. (a) The physical 16-channel coil utilized in the experiment. (b) Model of the coil loaded with Ella head model. (c, d) Target electrical properties. (e-j) Results of reconstructed EP using different number of channels.

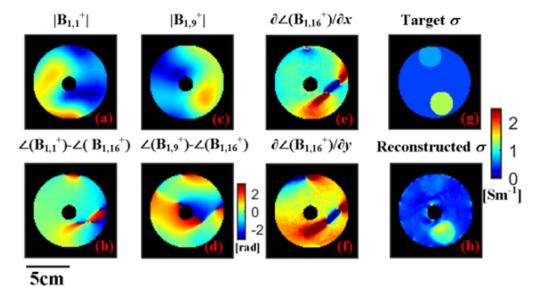


Fig. 2 Result in experiment study. (a, c) Measured magnitude $|B_1^+|$ of channel #1 and #9, respectively. (b, d) Measured relative phase $\angle B_{1r}^+$ of channel #1 and #9 referring to channel #16, respectively. (e, f) Calculated derivatives of $\angle B_1^+$ of channel #16 along x- and y-direction, respectively. (g) Probe-measured conductivity of the phantom. (h) Reconstructed conductivity.