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Purpose: Magnetic resonance electrical properties tomography (MREPT) is currently being investigated for many clinical applications
(1,2). However, MREPT suffers from statistical noise and boundary artifact (3). Especialy, the noise amplification in MREPT is
occurred due to the calculation of the Laplacian operator. To overcome this EPT error, filtering or fitting based technique was
introduced (2). In this study, low pass filter (LPF) based EPT reconstruction method without the Laplacian operator is proposed.
Theory: For conventional MREPT, the admittivity (y = iwp (o + iwe)) information is retrieved using Eq. 1 (H: magnetic field). In
2D image domain, a ssimple discrete Laplacian operator (L) can be defined as a convolution kernel and it can be decomposed into two
components due to its linearity (Eqg. 2). The frequency responses of L4 and the first component (L., C=4) are presented as Fig. 1ab.
Thisfirst term (L,) can be designed as a conventional LPF (Fig. 1c) by linearly combining the other L4 (4) and choosing appropriate C
value. From this, the conductivity (o) and permittivity (€) information can be extracted as Eq. 3 by substituting Ld for L PF.
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filter with arelatively smaller kernel (LPF,).
To compare with conventional method,
Gaussian filtering with various kernel sizes
was employed after calculating discrete
Laplacian operator. Conductivity error was
evaluated with root-mean-square error
(RMSE) over homogeneous region. For  Fig 2 (a) balanced SSFP magnitude and phase. (b) Conductivity map reconstructed using conventional and
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mixture of 1.0% agar and 0.5% NaCl.  45afunction of kernd size.
Experiment was performed in a 3T clinical
scanner (Siemens Tim Trio) using 3D TrueFISP (0=30°, TR/TE=4.8
/2.4ms with 4 average, voxel size=1x1x1 mm?®) for phantom and Spin
Echo (TR/TE=1000/12ms, voxel size=2x2x4 mm°) for in-vivo brain.
Conductivity map was reconstructed using only B, phase (5).
Result & Conclusion: In Fig. 2b and 2d, for small size kernel
(FWHM<4 mm), conductivity results of proposed method noisier than
the results of conventional method. However, as kernel size increases
(FWHM=5,6 mm), the proposed method effectively reduces the noise
in conductivity map and simultaneously prevented boundary artifact
(negative o value, black region in Fig. 2b) from spreading to adjacent
regions. The number of pixels with negative conductivity value shows
that the proposed method is less sensitive to boundary artifact
broadening (Fig. 2c). Similar results were observed for in-vivo brain
conductivity map (Fig. 3). Especidly, at the tissue boundaries, the
proposed method preserves the conductivity values. Hence, the
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involve a Laplacian operator in the original admittivity equation (EQ. with black color indicates negative conductivity value))
1). The method seems to work better for minimum kernel size of LPF, and also for high SNR data which is essential for EPT. In
practice, a scaling factor should be compensated after low pass filtering, because the LPFs cannot be substituted exact a Laplacian
operator. This scaling factor depends on the difference between FWHM of LPF; and LPF,. References: 1. E Badidema et al, MRM (2014)
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