Non-linear relationship between estimated liver iron concentration and R2*

Erik M. Akkerman¹, Jurgen H. Runge¹, Marian A. Troelstra¹, Aart J. Nederveen¹, and Jaap Stoker¹ ¹Radiology, Academic Medical Centre, Amsterdam, North Holland, Netherlands

TARGET AUDIENCE

Users of clinical MR liver iron measurements as well as those who seek to develop and optimize those measurements. Researchers with an interest in R_2^* and the mechanisms that generate R_2^* .

INTRODUCTION

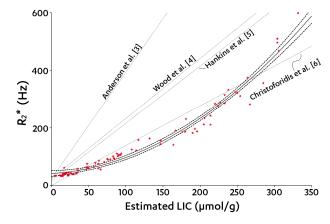
There are several MRI methods to assess liver iron concentration (LIC). In our hospital we use a standardized protocol combining a number of these approaches, including R_2^* measurement, and LIC-assessment following Gandon's method [1]. The analysis of patient LIC-assessments with these two methods, from Jan 2008 until Dec 2013, is presented here.

METHODS

All patients were scanned with the same protocol on a Siemens Avanto 1.5T. In case of multiple measurements for a patient, only the first one was included. In this way we obtained 95 individual measurements in a six year's period. R_2^* was measured with a spoiled gradient echo sequence (SpGE), TR = 300 ms, $\alpha = 20^\circ$, 12 echoes TE = 100 ms

$$S_T(TE) = S_{T0} \cdot e^{-R_2^* \cdot TE} \tag{1}$$

$$S(TE) = \sqrt{S_T^2(TE) + v^2}$$
 (2)


0.99 cdots 16.5 ms, using a surface coil. For Gandon's method we acquired five SpGE sequences with TRs and TEs according to [1], using the body coil for signal acquisition. Since the signal of SpGE-sequences is heavily influenced by B_0 -inhomogeneities across the slice, we aimed at optimal shimming by measuring no more than three transversal 10 mm slices in one breathhold, applying a manually defined shim region fitting the body tightly, excluding arms and air. ROIs of the liver were manually drawn, excluding visible blood vessels. To calculate R_2^* the ROI-averaged signals were fitted to the combination of eqs. 1 and 2. Eq. 1 describes the true signal, depending on the parameters S_{T0} and R_2^* . Eq. 2 describes an approximated Rician noise bias with the parameter v. Gandon's analysis was performed with the same liver ROI as for R_2^* , compared to a ROI of the paraspinal muscles. The algorithm was taken from Gandon's web-site [2].

RESULTS

The figure shows the R_2^* values against the LIC values for all measurements (red stars). There is a clear non-linear relationship, which was approximated (fitted) with a quadratic function: eq. 3 (solid line, with dashed lines as 95% CI). For comparison, a number of (linear) relationships found in literature are shown (dotted lines).

DISCUSSION

The clear non-linear relationship we find is remarkable. The data from Christoforidis et al. [6] lie in the same range as our data, but their error variations are larger, rendering it difficult to distinguish a possible non-linearity. Since our experience learns that a factor of 2 overestimation of R_2^* due to bad shimming is not exceptional, we are tempted to attribute the fact that the authors [3-5] report much larger values of R_2^* to suboptimal shimming. A limitation

$$R_2^* = 41.7 + 0.149 \cdot LIC + 4.04 \cdot 10^{-3} \cdot LIC^2$$
 (3)

of our data might be the absence of biopsy confirmation. Biopsy, however, has been replaced by MRI methods that are now standard care for determining LIC. A consecutive series with biopsy confirmation therefore is not feasible. A theoretical exploration of the non-linear behaviour of R_2^* would be of interest, but this is outside the scope of this abstract.

CONCLUSION

Accurate measurements with careful shimming reveal a non-linear relationship between R_2^* and LIC.

REFERENCES [1] Gandon Y, Olivie D, Guyader D et al. Lancet (2004) 363:357-362. [2] http://www.radio.univ-rennes1.fr/Sources/EN/Hemo.html [3] Anderson LJ, Holden S, Davis B et al. Eur Heart J (2001) 22:2171-2179. [4] Wood JC, Enriquez C, Ghugre N et al. Blood (2005) 106:1460-1465. [5] Hankins JS, McCarville MB, Loeffler RB et al. Blood (2009) 113:4853-4855. [6] Christoforidis A, Perifanis V, Spanos G et al. Eur J Haematol (2009) 82:388-392