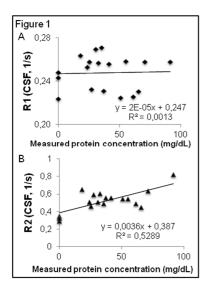
MRI properties of cerebrospinal fluid for assessment in neurodegenerative diseases

Alexia Daoust¹, Stephen Dodd¹, Govind Nair¹, Steven Jacobson¹, Daniel S. Reich¹, and Alan Koretsky¹

*ININDS, LFMI, NIH, Bethesda, MD, United States

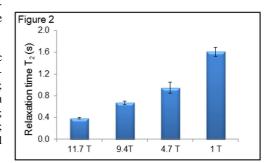
INTRODUCTION There continues to be interest in using changes in CSF properties to image neurodegenerative diseases^{1,2}. Due to the different relaxation properties of CSF and tissue there are many MRI sequences that enable segmentation of CSF from tissue^{3,4}. Optimization of these sequences requires understanding CSF relaxometric properties. While T_1 and T_2 values in the brain tissue have been published, there is a poor literature about CSF relaxation times. In this study, we aimed to establish the values of T_1 and T_2 for *in vitro* human and monkey CSF, as well as protein solution at 14.1T and the T_2 for *in vivo* mice CSF at various field strengths. We aimed also to determine whether the T_1 and/or T_2 values show any changes according protein and metal CSF concentration.


METHODS *IN VITRO Patients*: CSF was removed via a lumbar puncture from 4 HAM/TSP (HTLV-I-Associated Myelopathy/Tropical Spastic Paraparesis) 8 multiple sclerosis (MS) and 3 healthy patients (male and female, ~ 45 y.o.). Animals: CSF was removed via a transcutaneous cisterna magna puncture in 3 healthy monkeys (male and female, 10 y.o, rhesus macaque monkey). *Phantoms*: solution of saline and bovine serum albumin (BSA, 10-200 mg/dL). *MRI*: T₁ and T₂ values were calculated at 37°C on a 14.1 T MRI system (Bruker) using a volume transmit and receive coil. *T*₁ *Measurement*: Imaging was performed using a variable TR pulse sequence (RARE-VTR) with TE = 7.6 ms, TR = 500, 1163, 2016, 3213, 5243 and 15000 ms, slice thickness of 0.5 mm and an in-plane resolution of 0.3 mm². *T2 Measurement*: Spectroscopy was performed using a mutiecho CPMG sequence with TR = 20000 ms, TE = 1.875 – 1029 ms (intervals of 15 ms). *Post-Processing*: T₁ and T₂ map were calculated by performing a mono-exponential fit of the pixel or echo intensities. T₂ map was fitted using a non-negative least squares method⁵ and the spectrums were analyzed. R1 and R2 values were plotted against the protein concentrations. To evaluate whether the R1 and R2 is a predictor of protein concentration, the p-value for Pearson's correlation coefficient (R²) was computed. *Protein quantification*: The CSF protein concentration was quantified according to the Bradford method⁶. *Metals quantification*: The CSF metals quantification of Cu, Fe, Mn and Zn was performed by inductively coupled plasma mass spectrometry (ICP-MS, Exova, California) technique (500μL of each sample).

IN VIVO Animals: 12 healthy mice (C57Bl6 male, 3 m.o.) were used, n=3 per field. All procedures were performed under isoflurane anesthesia (2.5%). *MRI*: T_2 was calculated on a 1, 4.7, 9.4 and 11.7T MRI system (Bruker). T_2 *Measurement*: see above. *Post-Processing*: see above for the T_2 map calculation. T_2 values are expressed as mean \pm Standard Deviation (Fig 2).

RESULTS *In vitro* T_1 of human and monkey CSF was close to that of saline (difference <6%), however, the differences in T_2 between saline and CSF were large (~40%; Table 1). CSF samples were from different diseases in order to have a large protein concentration range [18-92 mg/dL]. We observed a weak correlation (p=0.01) between R_2 of CSF and protein concentration for both human (Fig 1B) and monkey CSF (data not shown), which is not observed for the R_1 (Fig 1A). Interestingly, human and monkey CSF R_2 changing rate was longer than the one of BSA solutions $(4.10^{-3}; 3.10^{-2} \text{ and } 1.10^{-3} \text{ mg/dL}^{-1}/\text{s}^{-1}$, respectively) indicating that there is either a specific protein(s) or other constituents on CSF with high relaxivity. To test whether paramagnetic metals ions could explain the T_2 relaxivity of CSF, we calculated they concentration (Table 1). For all metals, the concentration was too low to modify significantly the CSF T_2 relaxivity. At 11.7T, the *in vivo* CSF T_2 (0.39 \pm 0.01 s) was shorter than *in vitro* (Table 1). The Fig 2 shows a CSF T_2 decrease with an increase in field strength. *In vivo* and post mortem CSF T_2 diverges with increasing field strength.

Table 1


Sample name	n	Range of	Range of	Range of [Protein]	Range of	Range of	Range of	Range of
		$T_1(s)$	$T_2(s)$	(mg/dL)	[Cu] (µM)	[Fe] (µM)	[Mn] (µM)	[Zn] (µM)
Saline	3	4.1 - 4.5	2.9 - 3.4	0	0	0	0	0
Control patients	3	3.9 - 4.4	2.0 - 2.2	26 - 66	0.14-0.19	< 0.54	< 0.02	0.23 - 0.31
HAM/TSP patients	4	3.9 - 4.5	1.6 – 1.8	28 – 71	0.17 - 0.27	0.90 - 1.79	< 0.02	-
MS patients	8	3.7 - 4.0	1.2 - 2.0	18 – 92	0.14 - 0.32	< 0.54 - 1.07	< 0.02	0.21 - 1.38
Monkey	3	3.9 - 4.2	1.4 - 2.0	9 - 11	-	-	-	-

DISCUSSION In this study we were looking for the compound that is able to significantly change CSF T_2 relaxivity. Our results suggest that metals are too low concentrated to significantly change the CSF T_2 . Compound such as lipids and specific proteins will be investigated. T_1 and T_2 in vitro measurements are in agreement with literature⁷⁻⁸⁻⁹. Hopkins and al., have shown a T_1 = 4.3 s, and T_2 = [1.8-2.2] s measured in humans in vivo at a very low field (0.15 and 0.6T)⁷. That is also in agreement with our T_2 in vivo measurement at low field (1T). However, our results suggest that in vivo T_2 value at high field is incorrect and that low field is more optimal to quantify CSF relaxivity in vivo. These data are important for the development of new MRI sequence for CSF segmentation and for possible detection of any molec-

ular substrate of neurodegeneration within the CSF.

REFERENCES ¹Abdullah et al., Conf Proc IEEE Eng Med Biol Soc, 2013; ²Gao et al., Neuroimage, 2014; ³Hodel et al., Eur Radiol, 2013; ⁴Poh et al., 2012; ⁴; ⁵Prasloski et al., Magn Reson Med, 2012 ⁶Bradford, Anal Biochem, 1976; ⁶Hopkins et al., Magn Reson Med, 1986; ⁷Larsson et al., Magn Reson Med, 1987; ⁸Jezzard et al., Radiology, 1996.

