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Introduction: Multi-exponential NMR transverse relaxation signal from tissue, such as brain, cartilage and muscle, has the potential to define the relative weights and
decay time constants of underlying exponentially-decaying components, providing insight into macromolecular composition and characteristics [1-3]. Determining
these weights and decay constants requires the solution of an inverse Laplace transform (ILT), which is well-known to be ill-conditioned, rendering it highly sensitive to
noise and of potentially limited accuracy. We have recently demonstrated markedly improved stability of two-dimensional (2D) relaxometry, in which relaxation
components are characterized by both T, and T, as compared to the conventional 1D relaxometry[4], under certain conditions. However, acquisition time is roughly
proportional to the number of rows of data sampled in the indirect dimension, leading to lengthy acquisition times. Recently, Cloninger et. al., developed a compressed
sensing (CS) approach to 2D relaxometry which permits acquisition of only a fraction of the natural complete data set [5]. Results were tested and validated through
extensive simulations. In the present work, we apply the CS approach of Cloninger et al. to two experimental systems, olive oil and bovine patella articular cartilage.
Further, we present an extension of the algorithm from 2D to 3D, with further experimental validation using the olive oil phantom.

Theory: In 2D relaxometry based on longitudinal and transverse relaxation, acquired data is the superposition of signal from a distribution F(T1, T2), which, in the case
of discrete components, is the sum of scaled 2D delta functions. In the 3D case, the acquired data represents signal from a 3D distribution F(T1, T2, P) where the third
parameter characterizing spin systems is denoted P. Examples of this third parameter could be T>*, ADC, or magnetization transfer rate k. The acquired data matrix
M is related to the distribution F by the tensor product equation Mye. = (K; @ Ko® Kj) ¢ Fye., where M, and F,.. denote the lexicographical reordering of M and F into
vectors. Geometrically, M is obtained by multiplying the columns of F by K;, the rows by K,, and all columns in the z-direction by K;. The CS approach to this in 2D
involves SVD-based compression, matrix completion, and inversion algorithm described in [6]. To extend this approach to 3D we assume that M is sub-sampled only in
the x&y directions, with fully sampled data being acquired in the third dimension using, for example, a CPMG experiment where sub-sampling is not of use. We
compute the reduced SVD decomposition of each kernel and compress the data M along the z direction: Mcompressea = (IQ 1 & U;") ® M, where Us is the left singular
matrix of Kj. After the compression, the number of x&y slices of M is dramatically reduced, e.g., from 1024 to ~10. Matrix completion is then performed based on a
fixed point continuation algorithm[7] to generate the missing elements in the the randomly sub-sampled 2D x-y array. In the 3D case, we apply the same matrix
completion algorithm to each x-y slice of the 3D array Mcompressea- Finally, the completed 3D array is uncompressed following Mcompleted = (I&Q I & Us) ® Meompleted,compressed
and the inverse result F was obtained by following the inversion algorithm described in [6] that was expanded to 3D.

Methods & Materials: Experimental data were collected on a 400 MHz Bruker Avance III NMR spectrometer equipped with a Micro2.5 micro-imaging probe and a 5
mm solenoidal coil. One set of 2D data were acquired using a 2D T,-T, relaxometry pulse sequence consisting of an inversion recovery preparation module with
variable inversion times followed by a CPMG sequence with acquisition at echo maxima. A second 2D sequence was also implemented, which consisted of two CPMG
sequences separated by a variable delay mixing time, during which exchange between sites occurs. 3D data were acquired using a pulse sequence consisting of the same
T, and T, modules as described above, separated by a stimulated echo diffusion encoding sequence. The olive oil sample was studied at 25° C in a spherical tube to
minimize susceptibility effects. The T;-T, experiment was conducted using following parameters: echo time TE=2 ms, number of echoes NE=2048, repetition time
TR=5s, number of inversions NI=64 with inversion times sampled logarithmically between 50 and 3250 ms. The articular cartilage sample was placed in Fluorinert to
minimize susceptibility effects and studied at 4°C. The subchondral bone was positioned perpendicular to the axis of the magnet to maximize the alignment of the
collagen fibers in the cartilage deep zone with By. The T»-exchange-T, dataset was acquired using the following parameters: mixing time T, =10ms, TE=400us, TR=8s.
Both T, dimensions were sampled on a square grid, with a data size of 88x88 after logarithmic decimation of data points. The 3D experiments with olive oil were
performed under the same conditions as above, and with the same parameters for the T, and T, modules. The diffusion sensitization was performed with 64 b-values
log-spaced between 1.25 and 5085 s/mm?, with a diffusion encoding period of A=20ms and bipolar encoding gradient duration 5=2 ms for each gradient value.
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Figure 1. T-T histograms for the olive oil sample. ~ Figure 2. T,-exchange-T; histograms for the Figure 3. T,-D-T; histograms for the olive oil sample.

bovine articular cartilage sample.
Results & Discussion: The 2D T,-T,histograms for the olive oil sample are shown in Fig. 1, the 2D T,-exchange-T, histograms for the bovine articular cartilage in Fig.
2 and the 3D T,-D-T; histograms for the olive oil sample in Fig.3. In each figure, results obtained with the full data set (left panel) are compared to results obtained
using CS (right panel). Note that the degree of sub-sampling is indicated in the figure heading. Sub-sampling was performed in both dimensions for the 2D
comparisons as described by Cloninger in [5], and in the indirect T;- and D-dimensions for the 3D comparison. The results for the inverse problem with and without CS
in Figs. 1 show that the 2D CS algorithm can reduce the data acquisition time by a factor of 10, while maintaining the quality of the results. The T»-exchange-T, data
from the bovine articular cartilage poses a more challenging inversion problem due to the presence of off-diagonal peaks, which are absent from the T;-T, data from the
olive oil sample. Accordingly less sub-sampling, that is retention of a larger percentage of data points, is necessary to maintain accuracy, resulting in a reduction of
acquisition time by a factor of ~3.3. In Fig. 3, the comparison of the left and right panels shows that the 3D CS algorithm can provide accurate results while sub-
sampling as low as 5% of the data, speeding up the acquisition time by a factor of 20. The peaks at the edges of the 3D histograms in Fig. 3 are resulting from numerical
inaccuracies and ill-conditioned nature of the inversion problem. We note that subsampling in the T, direct dimension does not provide any data acquisition advantage,
but serves as a model for experiments in which data acquisition is time-consuming in both dimensions.
Conclusion: Use of CS can significantly decrease acquisition times for multidimensional NMR relaxometry and related experiments. Extension of existing 2D results
to 3D has been demonstrated, and has the potential to permit these higher-dimensional experiments to be performed in realistic acquisition times. These higher-
dimensional experiments have the potential to provide a much more complete characterization of tissue.
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