

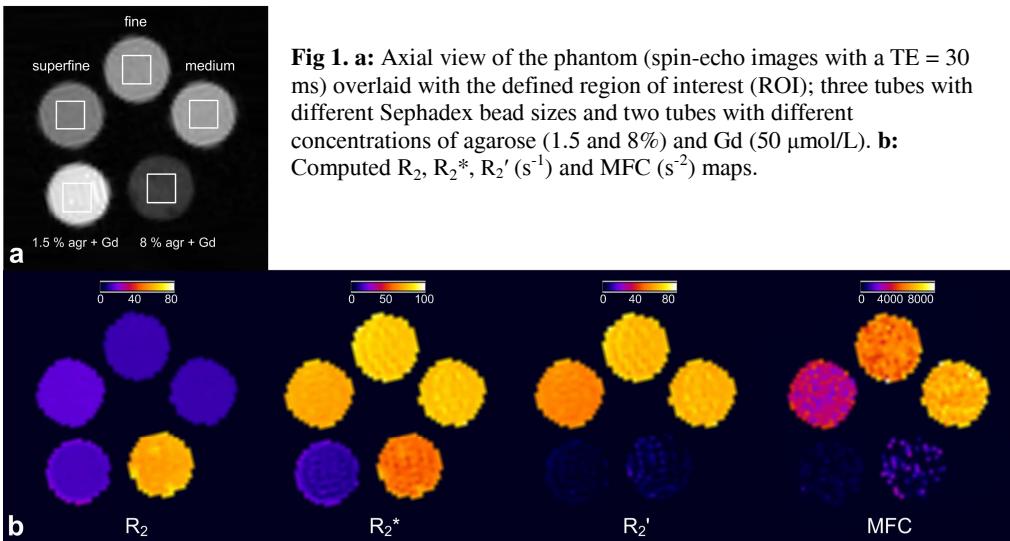
DIFFERENTIATING MICROSCOPIC FIELD INHOMOGENEITY INDUCED RELAXATION FROM R_2 AND R_2^* * RELAXATIONS WITH MAGNETIC FIELD CORRELATION IMAGING

Chu-Yu Lee^{1,2}, Xingju Nie^{1,2}, Jens H Jensen^{1,2}, Vitria Adisetiyo^{1,2}, Qingwei Liu³, and Joseph A Helpern^{1,2}

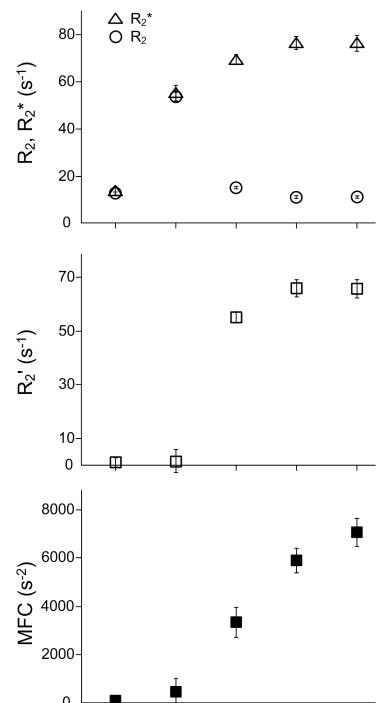
¹Department of Radiology and Radiology Science, Medical University of South Carolina, Charleston, SC, United States, ²Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States, ³Neuroimaging research, Barrow Neurological Institute, Phoenix, AZ, United States

Target audience: Scientists and clinicians interested in relaxometry and quantitative biomarkers.

Purpose: In biological tissues, the presence of iron-rich cells, deoxygenated red blood cells or a paramagnetic agent generates micron-scale variations of magnetic susceptibility,¹⁻³ resulting in microscopic magnetic field inhomogeneities (μ MFI). Therefore, it is possible to characterize *in vivo* tissue properties through quantifying the μ MFI. The relaxation rates R_2 , R_2^* , and R_2' have been previously used to quantify the relaxation due to μ MFI.^{4,5} An alternative approach is magnetic field correlation (MFC) imaging,⁶ where the measured MFC is closely linked to the μ MFI. MFC has been shown to effectively reflect iron depositions in the brain during normal aging and disease processes.⁷⁻¹² A prior study compared MFC, R_2 , and R_2^* for cell suspensions with different Gadolinium (Gd) contrast agent concentrations.¹³ However, the distinction between these measures has not been investigated with structure-induced variable μ MFI. In this work, we investigate how MFC, R_2 , R_2^* , R_2' change in phantoms with distinct μ MFI properties.


Methods: Phantom preparation: We generated μ MFI using a mixture of water and Sephadex (G-25; Sigma, St. Louis, USA), because water and dextran have different magnetic susceptibilities.¹⁴ To vary the μ MFI properties, Sephadex with three median bead sizes: superfine (52 μ m), fine (88 μ m), and medium (140 μ m) were prepared in separate tubes, and these were fully saturated in water with similar water content (79-83 % in volume). Thus, given the similar concentration of dextran, the μ MFI length scale is expected to increase with the larger bead size. For comparisons, two additional homogenous tubes were prepared without μ MFI but with different dipole-dipole interactions induced by varying concentrations of agarose (1.5% and 8%). The two tubes also contained identical concentrations of Gd (50 μ mol/L) to adjust the T_1 values. Five tubes were placed in a container and were surrounded with a corn syrup bath (Fig. 1a). MR experiments: The experiments were performed in 7T Bruker Biospec scanner. MFC images were acquired with an asymmetric spin echo sequence, where the 180° RF refocusing pulse was shifted with a fixed TE of 30 ms to specifically sensitize the signal to the μ MFI. The time shifts were 0, \pm 2, \pm 4, and \pm 6 ms. Other parameters were: TR = 2000 ms, FOV = 40 \times 40 mm², isotropic voxel sizes: 0.625³ mm³, and NEX = 5. R_2 and R_2^* images were acquired using the identical TR, slice coverage, and NEX as the MFC images. R_2 images were acquired with the CPMG sequence with TE = 11, 22, 33, 44, and 55 ms. R_2^* images were acquired with the multiple gradient echo sequence with min/max TE = 2.6/22.5 ms and echo spacing = 2.2 ms. Model fits: The MFC images with different time shifts were fitted with the model⁶: $S(t_s) = S_0 \exp(-2 \times MFC(TE/2) \times t_s^2)$, where t_s is the time shift of the 180° RF refocusing pulse. MFC is the correlation function of the μ MFI, defined as $MFC(t_1 - t_2) = \gamma^2 \langle \Delta B(t_1) \Delta B(t_2) \rangle$. Here, $\Delta B(t)$ is the magnetic field shift experienced by a water molecule, and γ is the gyromagnetic ratio. It is time-dependent because of water diffusion. $MFC(0)$ is the variance of the μ MFI. The R_2 and R_2^* images were fitted with the monoexponential model: $S(t) = S(0) \exp(-R \times t)$, where R is the measured relaxation rate. R_2' was computed as $R_2^* - R_2$. All the signals were corrected for rectified noise¹⁵ prior to the fittings, which were performed using the Levenberg-Marquardt algorithm in Matlab (Mathworks, Inc.).

Results: The measured R_2 , R_2^* and MFC values of the five tubes (Fig. 2) were within the range of *in vivo* measurements; measured MFC values in 3T⁸⁻¹² range from 0 to 1200 s⁻², and these are expected to increase quadratically with the applied field. The different dipole-dipole interactions induced by the two concentrations of agarose were only revealed by the measured R_2 and R_2^* (Fig. 1 and 2). Nonetheless, R_2^* , R_2' and MFC values were elevated by the generated μ MFI in the mixtures of water and Sephadex. Interestingly, only the MFC values clearly distinguished all three bead sizes.


Discussion: R_2 and R_2^* were sensitive to the dipole-dipole interactions and the μ MFI. R_2' and MFC values were specifically sensitive to the μ MFI, but only MFC differentiated the μ MFI induced by all three bead sizes. This may be related to the fact that MFC has a well defined relation with μ MFI, whereas the relation between R_2' and μ MFI is less straightforward.^{15,16}

Conclusion: We varied μ MFI with different Sephadex bead sizes in phantoms over the range of *in vivo* measurements. We demonstrated that MFC better characterized the variation of μ MFI compared to R_2 , R_2^* , and R_2' . This distinct contrast provided by MFC may be useful in assessing μ MFI changes associated with pathology.

References: [1]. Connor JR, et al. J Neurosci Res (27), 595-611, 1990. [2]. Brooks RA, et al. Med Phys (14), 903-13, 1987. [3]. Mathur-De Vre R, et al. Br J Radiol (68), 225-47, 1995. [4]. Ordidge RJ, et al. MRM (32), 335-41, 1994. [5]. Ma J, et al. JMR B (111), 61-9, 1996. [6]. Jensen JH, et al. MRM (55), 1350-61, 2006. [7]. Ge Y, et al. AJNR (28), 1639-44, 2007. [8]. Jensen JH, et al. MRM (61), 481-5, 2009. [9]. Raz E, et al. AJNR (32), 1851-6, 2011. [10]. Dumas EM, et al. Neuroimage (61), 558-64, 2012. [11]. Adisetiyo V, et al. JMRI (36), 322-31, 2012. [12]. Adisetiyo V, et al. Radiology (272), 524-32, 2014. [13]. Patil V, et al. MRM (62), 1002-6, 2009. [14]. Kuznetsov OA, et al. Adv Space Res (28), 651-8, 2001. [15]. Yablonskiy DA, et al. MRM (32), 749-63, 1994. [16]. Jensen JH, et al. MRM (44), 144-56, 2000.

Fig 1. a: Axial view of the phantom (spin-echo images with a TE = 30 ms) overlaid with the defined region of interest (ROI); three tubes with different Sephadex bead sizes and two tubes with different concentrations of agarose (1.5 and 8%) and Gd (50 μ mol/L). **b:** Computed R_2 , R_2^* , R_2' (s^{-1}) and MFC (s^{-2}) maps.

Fig. 2. Comparisons of the R_2 , R_2^* , R_2' and MFC values derived from the ROI in Fig. 1. Error bars indicate SD.